Displaying 1 to 20 from 320 results

Firmware - PX4 Pro Autopilot Software

  •    C++

This repository holds the PX4 Pro flight control solution for drones, with the main applications located in the src/modules directory. It also contains the PX4 Drone Middleware Platform, which provides drivers and middleware to run drones. This Developer Guide is for software developers who want to modify the flight stack and middleware (e.g. to add new flight modes), hardware integrators who want to support new flight controller boards and peripherals, and anyone who wants to get PX4 working on a new (unsupported) airframe/vehicle.

tf-pose-estimation - Deep Pose Estimation implemented using Tensorflow with Custom Architectures for fast inference

  •    PureBasic

'Openpose' for human pose estimation have been implemented using Tensorflow. It also provides several variants that have made some changes to the network structure for real-time processing on the CPU or low-power embedded devices. 2018.5.21 Post-processing part is implemented in c++. It is required compiling the part. See: https://github.com/ildoonet/tf-pose-estimation/tree/master/src/pafprocess 2018.2.7 Arguments in run.py script changed. Support dynamic input size.

OpenSimpleLidar - Open Hardware scanning laser rangefinder

  •    C

Open Hardware scanning laser rangefinder. It is really cheap - its components cost less than $35.




awesome-robotic-tooling - Tooling for professional robotic development in C++ and Python with a touch of ROS, autonomous driving and aerospace: https://freerobotics

  •    

To stop reinventing the wheel you need to know about the wheel. This list is an attempt to show the variety of open and free tools in software and hardware development, which are useful in professional robotic development. Your contribution is necessary to keep this list alive, increase the quality and to expand it. You can read more about it's origin and how you can participate in the contribution guide and related blog post. All new project entries will have a tweet from protontypes.

depth_clustering - :taxi: Fast and robust clustering of point clouds generated with a Velodyne sensor

  •    C++

This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velodyne sensors, i.e. 16, 32 and 64 beam ones. I recommend using a virtual environment in your catkin workspace (<catkin_ws> in this readme) and will assume that you have it set up throughout this readme. Please update your commands accordingly if needed. I will be using pipenv that you can install with pip.

LeGO-LOAM - LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain

  •    C++

An updated lidar-initial odometry package, LIO-SAM, has been open-sourced and available for testing. You can use the following commands to download and compile the package.


PX4-Autopilot - PX4 Autopilot Software

  •    C++

This repository holds the PX4 flight control solution for drones, with the main applications located in the src/modules directory. It also contains the PX4 Drone Middleware Platform, which provides drivers and middleware to run drones. PX4 is highly portable, OS-independent and supports Linux, NuttX and QuRT out of the box.

webots - Webots Robot Simulator

  •    C++

Webots is an open-source robot simulator released under the terms of the Apache 2.0 license. It provides a complete development environment to model, program and simulate robots, vehicles and biomechanical systems. You can download pre-compiled binaries for Windows, macOS and Linux of the latest release, as well as older releases and nightly builds.

loam_velodyne - Laser Odometry and Mapping (Loam) is a realtime method for state estimation and mapping using a 3D lidar

  •    C++

Ask questions here. Issues #71 and #7 address this problem. The current known solution is to build the same version of PCL that you have on your system from source, and set the CMAKE_PREFIX_PATH accordingly so that catkin can find it. See this issue for more details.

BehaviorTree.CPP - Behavior Trees Library in C++. Batteries included.

  •    C++

This C++ 14 library provides a framework to create BehaviorTrees. It was designed to be flexible, easy to use, reactive and fast. Even if our main use-case is robotics, you can use this library to build AI for games, or to replace Finite State Machines in your application.

autoware.ai - Open-source software for self-driving vehicles

  •    

Autoware is the world's first "all-in-one" open-source software for self-driving vehicles. The capabilities of Autoware are primarily well-suited for urban cities, but highways, freeways, mesomountaineous regions, and geofenced areas can be also covered. The code base of Autoware is protected by the Apache 2 License. Please use it at your own discretion. For safe use, we provide a ROSBAG-based simulation environment for those who do not own real autonomous vehicles. If you plan to use Autoware with real autonomous vehicles, please formulate safety measures and assessment of risk before field testing. You may refer to Autoware Wiki for Users Guide and Developers Guide.

msckf_vio - Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight

  •    C++

The MSCKF_VIO package is a stereo version of MSCKF. The software takes in synchronized stereo images and IMU messages and generates real-time 6DOF pose estimation of the IMU frame. The software is tested on Ubuntu 16.04 with ROS Kinetic.

lidar_camera_calibration - ROS package to find a rigid-body transformation between a LiDAR and a camera for "LiDAR-Camera Calibration using 3D-3D Point correspondences"

  •    C++

The package is used to calibrate a LiDAR (config to support Hesai and Velodyne hardware) with a camera (works for both monocular and stereo). The package finds a rotation and translation that transform all the points in the LiDAR frame to the (monocular) camera frame. Please see Usage for a video tutorial. The lidar_camera_calibration/pointcloud_fusion provides a script to fuse point clouds obtained from two stereo cameras. Both of which were extrinsically calibrated using a LiDAR and lidar_camera_calibration. We show the accuracy of the proposed pipeline by fusing point clouds, with near perfection, from multiple cameras kept in various positions. See Fusion using lidar_camera_calibration for results of the point cloud fusion (videos).

simulator - A ROS/ROS2 Multi-robot Simulator for Autonomous Vehicles

  •    CSharp

Check out our latest news and subscribe to our mailing list to get the latest updates. LG Electronics America R&D Lab has developed an HDRP Unity-based multi-robot simulator for autonomous vehicle developers. We provide an out-of-the-box solution which can meet the needs of developers wishing to focus on testing their autonomous vehicle algorithms. It currently has integration with The Autoware Foundation's Autoware.auto and Baidu's Apollo platforms, can generate HD maps, and can be immediately used for testing and validation of a whole system with little need for custom integrations. We hope to build a collaborative community among robotics and autonomous vehicle developers by open sourcing our efforts.

darknet_ros - YOLO ROS: Real-Time Object Detection for ROS

  •    C++

This is a ROS package developed for object detection in camera images. You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. For more information about YOLO, Darknet, available training data and training YOLO see the following link: YOLO: Real-Time Object Detection. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. Note: We also provide branches that work under ROS Melodic, ROS Foxy and ROS2.

ros_best_practices - Best practices, conventions, and tricks for ROS

  •    C++

Best practices for ROS2 in the making. See the Foxy branch in the meanwhile. This is a loose collection of best practices, conventions, and tricks for using the Robot Operating System (ROS). It builds up on the official ROS documentation and other resources and is meant as summary and overview.

evo - Python package for the evaluation of odometry and SLAM

  •    Python

This package provides executables and a small library for handling, evaluating and comparing the trajectory output of odometry and SLAM algorithms. See here for more infos about the formats.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.