Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge. Learning to Adapt Structured Output Space for Semantic Segmentation Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).
deep-learning computer-vision domain-adaptation semantic-segmentation generative-adversarial-network adversarial-learning pytorch
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.