- 369

Code for tuning hyperparams with Hyperband, adapted from Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Use defs.meta/defs_regression.meta to try many models in one Hyperband run. This is an automatic alternative to constructing search spaces with multiple models (like defs.rf_xt, or defs.polylearn_fm_pn) by hand.

http://fastml.com/tuning-hyperparams-fast-with-hyperband/https://github.com/zygmuntz/hyperband

Tags | hyperparameters hyperparameter-optimization hyperparameter-tuning gradient-boosting-classifier gradient-boosting machine-learning |

Implementation | Python |

License | Public |

Platform | Windows Linux |

This code provides a hyper-parameter optimization implementation for machine learning algorithms, as described in the paper: L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization.

machine-learning deep-learning random-forest optimization svm genetic-algorithm machine-learning-algorithms hyperparameter-optimization artificial-neural-networks grid-search tuning-parameters knn bayesian-optimization hyperparameter-tuning random-search particle-swarm-optimization hpo python-examples python-samples hyperbandConsider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

machine-learning data-science automl automation scikit-learn hyperparameter-optimization model-selection parameter-tuning automated-machine-learning random-forest gradient-boosting feature-engineering xgboost genetic-programmingauto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

machine-learning data-science automated-machine-learning gradient-boosting scikit-learn machine-learning-pipelines machine-learning-library production-ready automl lightgbm analytics feature-engineering hyperparameter-optimization deep-learning xgboost keras deeplearning tensorflow artificial-intelligenceRL Baselines3 Zoo is a training framework for Reinforcement Learning (RL), using Stable Baselines3. It provides scripts for training, evaluating agents, tuning hyperparameters, plotting results and recording videos.

reinforcement-learning robotics optimization lab openai gym hyperparameter-optimization rl sde hyperparameter-tuning hyperparameter-search pybullet stable-baselines pybullet-environments tuning-hyperparametersXGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

gbdt gbrt gbm distributed-systems xgboost gradient-boosting histogramIt is a Tiny implement of Gradient Boosting tree, based on XGBoost's scoring function and SLIQ's efficient tree building algorithm. TGBoost build the tree in a level-wise way as in SLIQ (by constructing Attribute list and Class list). Currently, TGBoost support parallel learning on single machine, the speed and memory consumption are comparable to XGBoost. Handle missing value, XGBoost learn a direction for those with missing value, the direction is left or right. TGBoost take a different approach: it enumerate missing value go to left child, right child and missing value child, then choose the best one. So TGBoost use Ternary Tree.

boosted-trees gradient-boosting-machine machine-learning xgboost sliqCatBoost is a machine learning method based on gradient boosting over decision trees. All CatBoost documentation is available here.

machine-learning decision-trees gradient-boosting gbm gbdt r kaggle gpu-computing catboost tutorial categorical-features distributed gpu coreml opensource data-science big-dataHistorically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

machine-learning interpretability gradient-boosting blackbox scikit-learn xai interpretmlTuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum. You'll need to install autograd, our automatic differentiation package. However, autograd (aka funkyYak) has changed a lot since we wrote the hypergrad code, and it would take a little bit of work to make them compatible again.

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator.

automl scikit-learn automated-machine-learning hyperparameter-optimization hyperparameter-tuning hyperparameter-search bayesian-optimization metalearning meta-learning smacRumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceDetermined integrates these features into an easy-to-use, high-performance deep learning environment — which means you can spend your time building models instead of managing infrastructure. To use Determined, you can continue using popular DL frameworks such as TensorFlow and PyTorch; you just need to update your model code to integrate with the Determined API.

kubernetes machine-learning deep-learning tensorflow pytorch hyperparameter-optimization hyperparameter-tuning hyperparameter-search distributed-training ml-infrastructure ml-platformAttention: This package is under heavy development and subject to change. A stable release of SMAC (v2) in Java can be found here. The documentation can be found here.

bayesian-optimization bayesian-optimisation hyperparameter-optimization hyperparameter-tuning hyperparameter-search configuration algorithm-configuration automl automated-machine-learningStacked ensembles are simple in theory. You combine the predictions of smaller models and feed those into another model. However, in practice, implementing them can be a major headache. Xcessiv holds your hand through all the implementation details of creating and optimizing stacked ensembles so you're free to fully define only the things you care about.

machine-learning ensemble-learning stacked-ensembles scikit-learn data-science hyperparameter-optimization automated-machine-learningFor more details, please refer to Features.Experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

gbdt gbm machine-learning data-mining kaggle efficiency distributed lightgbm gbrtTest tube is a python library to track and parallelize hyperparameter search for Deep Learning and ML experiments. It's framework agnostic and built on top of the python argparse API for ease of use. If you're a researcher, test-tube is highly encouraged as a way to post your paper's training logs to help add transparency and show others what you've tried that didn't work.

deep-learning machine-learning tensorflow hyperparameter-optimization neural-networks data-science keras pytorch caffe2 caffe chainer grid-search random-searchYtk-learn is a distributed machine learning library which implements most of popular machine learning algorithms

machine-learning distributed gbm gbdt logistic-regression factorization-machines spark hadoopNNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning experiments. The tool dispatches and runs trial jobs that generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in different environments (e.g. local machine, remote servers and cloud). This command will start an experiment and a WebUI. The WebUI endpoint will be shown in the output of this command (for example, http://localhost:8080). Open this URL in your browser. You can analyze your experiment through WebUI, or browse trials' tensorboard.

automl deep-learning neural-architecture-search hyperparameter-optimization optimizerInstructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

machine-learning deep-learning random-forest gradient-boosting-machine tutorial data-science ensemble-learning rThis project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

machine-learning data-science r gradient-boosting-machine random-forest deep-learning xgboost h2o spark
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**