- 42

PyTorch implementation of VQ-VAE by AĆ¤ron van den Oord et al.

https://github.com/zalandoresearch/pytorch-vq-vaeTags | pytorch vq-vae vae deep-learning |

Implementation | Jupyter Notebook |

License | MIT |

Platform |

A PyTorch-based package containing useful models for modern deep semi-supervised learning and deep generative models. Want to jump right into it? Look into the notebooks. 2018.04.17 - The Gumbel softmax notebook has been added to show how you can use discrete latent variables in VAEs. 2018.02.28 - The β-VAE notebook was added to show how VAEs can learn disentangled representations.

semi-supervised-learning pytorch generative-modelsCollection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Generated samples will be stored in GAN/{gan_model}/out (or VAE/{vae_model}/out, etc) directory during training.

vae gan pytorch tensorflow generative-model machine-learning rbm restricted-boltzmann-machineThis package is part of the Kadenze Academy program Creative Applications of Deep Learning w/ TensorFlow. from cadl import and then pressing tab to see the list of available modules.

deep-learning neural-network tutorial mooc gan vae vae-gan pixelcnn wavenet magenta nsynth tensorflow celeba cyclegan dcgan word2vec glove autoregressive conditional courseTel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.

gpu nvidia docker-image machine-learning deep-learning data-science cuda-kernels kaggle-competition cuda pytorch pytorch-tutorials pytorch-tutorial bootcamp meetup kaggle kaggle-scripts pycudaPyTorch Geometric is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

pytorch geometric-deep-learning graph mesh neural-networks spline-cnnThis repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less than 30 lines of code. Before starting this tutorial, it is recommended to finish Official Pytorch Tutorial.

deep-learning pytorch-tutorial neural-networks pytorch tutorial tensorboardPyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

neural-network autograd gpu numpy deep-learning tensorPyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

deep-learningThis repository includes basics and advanced examples for deep learning by using Pytorch. Basics which are basic nns like Logistic, CNN, RNN, LSTM are implemented with few lines of code, advanced examples are implemented by complex model. It is better finish Official Pytorch Tutorial before this.

deep-learning pytorch reinforcement-learningThis repository contains material related to Udacity's Deep Reinforcement Learning Nanodegree program. The tutorials lead you through implementing various algorithms in reinforcement learning. All of the code is in PyTorch (v0.4) and Python 3.

deep-reinforcement-learning reinforcement-learning reinforcement-learning-algorithms neural-networks pytorch pytorch-rl ddpg dqn ppo dynamic-programming cross-entropy hill-climbing ml-agents openai-gym-solutions openai-gym rl-algorithmsSpotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. See the full documentation for details.

recommender-system deep-learning learning-to-rank machine-learning matrix-factorization pytorchRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchModular Deep Reinforcement Learning framework in PyTorch. A multitask agent solving both OpenAI Cartpole-v0 and Unity Ball2D.

reinforcement-learning pytorch openai-gym framework research dqn artificial-intelligence policy-gradient actor-critic ppo a3c deep-rlA comprehensive list of pytorch related content on github,such as different models,implementations,helper libraries,tutorials etc.

pytorch machine-learning deep-learning tutorials papers awesome awesome-list pytorch-tutorials data-science nlp nlp-library cv computer-vision natural-language-processing facebook probabilistic-programming utility-library neural-network pytorch-modelA simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play based reinforcement learning based on the AlphaGo Zero paper (Silver et al). It is designed to be easy to adopt for any two-player turn-based adversarial game and any deep learning framework of your choice. A sample implementation has been provided for the game of Othello in PyTorch, Keras and TensorFlow. An accompanying tutorial can be found here. We also have implementations for GoBang and TicTacToe. To use a game of your choice, subclass the classes in Game.py and NeuralNet.py and implement their functions. Example implementations for Othello can be found in othello/OthelloGame.py and othello/{pytorch,keras,tensorflow}/NNet.py.

tensorflow pytorch keras gobang gomoku alpha-zero alphago-zero alphago reinforcement-learning self-play mcts monte-carlo-tree-search othello tf deep-learning alphazeroPyro is a universal probabilistic programming language (PPL) written in Python and supported by PyTorch on the backend. Pyro enables flexible and expressive deep probabilistic modeling, unifying the best of modern deep learning and Bayesian modeling.

pytorch machine-learning bayesian webppl inference probabilistic-programming probabilistic-graphical-models bayesian-inference variational-inference uberAmazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

pytorch data-augmentation kaggle-competition kaggle deep-learning computer-vision keras neural-networks neural-network-example transfer-learningThere are certainly a lot of guides to assist you build great deep learning (DL) setups on Linux or Mac OS (including with Tensorflow which, unfortunately, as of this posting, cannot be easily installed on Windows), but few care about building an efficient Windows 10-native setup. Most focus on running an Ubuntu VM hosted on Windows or using Docker, unnecessary - and ultimately sub-optimal - steps. We also found enough misguiding/deprecated information out there to make it worthwhile putting together a step-by-step guide for the latest stable versions of Keras, Tensorflow, CNTK, MXNet, and PyTorch. Used either together (e.g., Keras with Tensorflow backend), or independently -- PyTorch cannot be used as a Keras backend, TensorFlow can be used on its own -- they make for some of the most powerful deep learning python libraries to work natively on Windows.

theano gpu-acceleration deep-learning tensorflow cudnn cntk gpu-mode kerasPyTorch tutorials and fun projects including neural talk, neural style, poem writing, anime generation

pytorch pytorch-tutorials pytorch-tutorials-cn deep-learning neural-style charrnn gan caption neuraltalk image-classification visdom tensorboard nn tensor autograd jupyter-notebook
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**