adversarial-frcnn - A-Fast-RCNN (CVPR 2017)

  •        34

This is a Caffe based version of A-Fast-RCNN (arxiv_link). Although we originally implement it on torch, this Caffe re-implementation is much simpler, faster and easier to use. We release the code for training A-Fast-RCNN with Adversarial Spatial Dropout Network.

https://github.com/xiaolonw/adversarial-frcnn

Tags
Implementation
License
Platform

   




Related Projects

Android-Object-Detection - :coffee: Fast-RCNN and Scene Recognition using Caffe

  •    Java

Get the Caffe model and push it to Phone SDCard. For object detection, network(*.prototxt) should use ROILayer, you can refer to Fast-RCNN. For scene recognition(object recognition), it can use any caffe network and weight with memory input layer. Scene recognition - Convolutional neural networks trained on Places Input a picture of a place or scene and predicts it.

All-About-the-GAN - All About the GANs(Generative Adversarial Networks) - Summarized lists for GAN

  •    Python

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

tf-faster-rcnn - Tensorflow Faster RCNN for Object Detection

  •    Python

For a good and more up-to-date implementation for faster/mask RCNN with multi-gpu support, please see the example in TensorPack here. A Tensorflow implementation of faster RCNN detection framework by Xinlei Chen (xinleic@cs.cmu.edu). This repository is based on the python Caffe implementation of faster RCNN available here.

Keras-GAN - Keras implementations of Generative Adversarial Networks.

  •    Python

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed. Implementation of Auxiliary Classifier Generative Adversarial Network.

generative-compression - TensorFlow Implementation of Generative Adversarial Networks for Extreme Learned Image Compression

  •    Python

TensorFlow Implementation for learned compression of images using Generative Adversarial Networks. The method was developed by Agustsson et. al. in Generative Adversarial Networks for Extreme Learned Image Compression. The proposed idea is very interesting and their approach is well-described. Training is conducted with batch size 1 and reconstructed samples / tensorboard summaries will be periodically written every certain number of steps (default is 128). Checkpoints are saved every 10 epochs.


cascade-rcnn - Caffe implementation of multiple popular object detection frameworks

  •    C++

This repository is written by Zhaowei Cai at UC San Diego. This repository implements mulitple popular object detection algorithms, including Faster R-CNN, R-FCN, FPN, and our recently proposed Cascade R-CNN, on the MS-COCO and PASCAL VOC datasets. Multiple choices are available for backbone network, including AlexNet, VGG-Net and ResNet. It is written in C++ and powered by Caffe deep learning toolbox.

caldera - An automated adversary emulation system

  •    Python

CALDERA is an automated adversary emulation system that performs post-compromise adversarial behavior within Windows Enterprise networks. It generates plans during operation using a planning system and a pre-configured adversary model based on the Adversarial Tactics, Techniques & Common Knowledge (ATT&CK™) project. These features allow CALDERA to dynamically operate over a set of systems using variable behavior, which better represents how human adversaries perform operations than systems that follow prescribed sequences of actions. CALDERA is useful for defenders who want to generate real data that represents how an adversary would typically behave within their networks. Since CALDERA's knowledge about a network is gathered during its operation and is used to drive its use of techniques to reach a goal, defenders can get a glimpse into how the intrinsic security dependencies of their network allow an adversary to be successful. CALDERA is useful for identifying new data sources, creating and refining behavioral-based intrusion detection analytics, testing defenses and security configurations, and generating experience for training.

adversarial-robustness-toolbox - This is a library dedicated to adversarial machine learning

  •    Jupyter

This is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting and analysis of attacks and defense methods for machine learning models. The Adversarial Robustness Toolbox provides an implementation for many state-of-the-art methods for attacking and defending classifiers.

pix2pix-tensorflow - TensorFlow implementation of "Image-to-Image Translation Using Conditional Adversarial Networks"

  •    Python

TensorFlow implementation of Image-to-Image Translation Using Conditional Adversarial Networks that learns a mapping from input images to output images. Note: To avoid the fast convergence of D (discriminator) network, G (generator) network is updated twice for each D network update, which differs from original paper but same as DCGAN-tensorflow, which this project based on.

StarGAN - Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

  •    Python

PyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.

DCGAN-tensorflow - A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

  •    Javascript

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

Generative-Adversarial-Networks - Tutorial on GANs

  •    Jupyter

My blog post on GANs and overview of some associated papers. Generative adversarial networks (GANs) are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.

adversarial - Code and hyperparameters for the paper "Generative Adversarial Networks"

  •    Python

"Generative Adversarial Networks." Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. ArXiv 2014. Please cite this paper if you use the code in this repository as part of a published research project.

adversarial_image_defenses - Countering Adversarial Image using Input Transformations.

  •    Python

This package implements the experiments described in the paper Countering Adversarial Images Using Input Transformations. It contains implementations for adversarial attacks, defenses based image transformations, training, and testing convolutional networks under adversarial attacks using our defenses. We also provide pre-trained models. Please refer to the paper for details on these defenses. A detailed description of the original image quilting algorithm can be found here; a detailed description of our solver for total variation minimization can be found here.

adversarial_image_defenses - Countering Adversarial Image using Input Transformations.

  •    Python

This package implements the experiments described in the paper Countering Adversarial Images Using Input Transformations. It contains implementations for adversarial attacks, defenses based image transformations, training, and testing convolutional networks under adversarial attacks using our defenses. We also provide pre-trained models. Please refer to the paper for details on these defenses. A detailed description of the original image quilting algorithm can be found here; a detailed description of our solver for total variation minimization can be found here.

metta - An information security preparedness tool to do adversarial simulation.

  •    Python

Metta is an information security preparedness tool. This project uses Redis/Celery, python, and vagrant with virtualbox to do adversarial simulation. This allows you to test (mostly) your host based instrumentation but may also allow you to test any network based detection and controls depending on how you set up your vagrants.

pix2pix - Image-to-image translation with conditional adversarial nets

  •    Lua

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR, 2017. On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

RON - RON: Reverse Connection with Objectness Prior Networks for Object Detection, CVPR 2017

  •    Python

RON is a state-of-the-art visual object detection system for efficient object detection framework. The code is modified from py-faster-rcnn. You can use the code to train/evaluate a network for object detection task. For more details, please refer to our CVPR paper. Note: SSD300 and SSD500 are the original SSD model from SSD.