In many machine learning applications, we often come across datasets where some types of data may be seen more than other types. Take identification of rare diseases for example, there are probably more normal samples than disease ones. In these cases, we need to make sure that the trained model is not biased towards the class that has more data. As an example, consider a dataset where there are 5 disease images and 20 normal images. If the model predicts all images to be normal, its accuracy is 80%, and F1-score of such a model is 0.88. Therefore, the model has high tendency to be biased toward the ‘normal’ class. To solve this problem, a widely adopted technique is called resampling. It consists of removing samples from the majority class (under-sampling) and / or adding more examples from the minority class (over-sampling). Despite the advantage of balancing classes, these techniques also have their weaknesses (there is no free lunch). The simplest implementation of over-sampling is to duplicate random records from the minority class, which can cause overfitting. In under-sampling, the simplest technique involves removing random records from the majority class, which can cause loss of information.
https://github.com/ufoym/imbalanced-dataset-samplerTags | pytorch imbalanced-data image-classification data-sampling |
Implementation | Python |
License | MIT |
Platform | Windows Linux |
So far, the library contains an implementation of FCN-32s (Long et al.), Resnet-18-8s, Resnet-34-8s (Chen et al.) image segmentation models in Pytorch and Pytorch/Vision library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, you will have to write a dataloader for your dataset. Models for Object Detection will be released soon.
This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.
semantic-segmentation mobilenet-v2 deeplabv3plus mixedscalenet senet wide-residual-networks dual-path-networks pytorch cityscapes mapillary-vistas-dataset shufflenet inplace-activated-batchnorm encoder-decoder-model mobilenet light-weight-net deeplabv3 mobilenetv2plus rfmobilenetv2plus group-normalization semantic-context-lossThis is a pytorch code for video (action) classification using 3D ResNet trained by this code. The 3D ResNet is trained on the Kinetics dataset, which includes 400 action classes. This code uses videos as inputs and outputs class names and predicted class scores for each 16 frames in the score mode. In the feature mode, this code outputs features of 512 dims (after global average pooling) for each 16 frames. Torch (Lua) version of this code is available here.
video-classification computer-vision computer-vision-tools pytorch action-recognition deep-learningLabelbox is a data labeling tool that's purpose built for machine learning applications. Start labeling data in minutes using pre-made labeling interfaces, or create your own pluggable interface to suit the needs of your data labeling task. Labelbox is lightweight for single users or small teams and scales up to support large teams and massive data sets. Simple image labeling: Labelbox makes it quick and easy to do basic image classification or segmentation tasks. To get started, simply upload your data or a CSV file containing URLs pointing to your data hosted on a server, select a labeling interface, (optional) invite collaborators and start labeling.
image-classification image-segmentation computer-vision tensorflow labeling annotations deep-learning recognition tools image-annotationText-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.
gan generative-adversarial-network adversarial-machine-learning progressively-growing-gan text-to-imageTel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.
gpu nvidia docker-image machine-learning deep-learning data-science cuda-kernels kaggle-competition cuda pytorch pytorch-tutorials pytorch-tutorial bootcamp meetup kaggle kaggle-scripts pycudaPytorch implementation for multimodal image-to-image translation. For example, given the same night image, our model is able to synthesize possible day images with different types of lighting, sky and clouds. The training requires paired data. Note: The current software works well with PyTorch 0.4. Check out the older branch that supports PyTorch 0.1-0.3.
pytorch pix2pix gans generative-adversarial-network deep-learningThe purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.
gan adversarial-networks arxiv neural-network unsupervised-learning adversarial-nets image-synthesis deep-learning generative-adversarial-network medical-imaging tensorflow pytorch paper cgan ct-denoising segmentation medical-image-synthesis reconstruction detection classificationThe goal is to teach a siamese network to be able to distinguish pairs of images. This project uses pytorch. Any dataset can be used. Each class must be in its own folder. This is the same structure that PyTorch's own image folder dataset uses.
pytorch-tutorial deep-learning neural-network siamese-network pytorch face-recognitionLightLDA is a distributed system for large scale topic modeling. It implements a distributed sampler that enables very large data sizes and models. LightLDA improves sampling throughput and convergence speed via a fast O(1) metropolis-Hastings algorithm, and allows small cluster to tackle very large data and model sizes through model scheduling and data parallelism architecture. LightLDA is implemented with C++ for performance consideration.
PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.
pytorch nlp natural-language-processing pytorch-nlp torchnlp data-loader embeddings word-vectors deep-learning dataset metrics neural-network sru machine-learningPlease open an issue for questions, comments, and bug reports. The goal of this benchmark is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed. It is similar to semantic segmentation tasks in COCO and Pascal Dataset, but the data is more scene-centric and with a diverse range of object categories. The data for this benchmark comes from ADE20K Dataset (the full dataset will be released after the benchmark) which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. Specifically, the benchmark data is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. There are in total 150 semantic categories included in the benchmark for evaluation, which include stuffs like sky, road, grass, and discrete objects like person, car, bed. Note that non-uniform distribution of objects occurs in the images, mimicking a more natural object occurrence in daily scenes.
MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.
machine-learning spark cntk pyspark azure microsoft-machine-learning microsoft mlAmazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
pytorch data-augmentation kaggle-competition kaggle deep-learning computer-vision keras neural-networks neural-network-example transfer-learningemcee is a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the Astrophysics literature. Read the docs at emcee.readthedocs.io.
mcmc mcmc-sampler probabilistic-data-analysisCollection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.
NFStream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments. NFStream extracts +90 flow features and can convert it directly to a pandas Dataframe or a CSV file.
data-science data-analysis data-mining network-analysis network-security network-monitoring cybersecurity machine-learning artificial-intelligence dataset-generation deep-packet-inspection netflow traffic-analysis traffic-classification pcap packet-capture packet-analyser ndpiThis repository contains the implementation of a convolutional neural network used to segment blood vessels in retina fundus images. This is a binary classification task: the neural network predicts if each pixel in the fundus image is either a vessel or not. The neural network structure is derived from the U-Net architecture, described in this paper. The performance of this neural network is tested on the DRIVE database, and it achieves the best score in terms of area under the ROC curve in comparison to the other methods published so far. Also on the STARE datasets, this method reports one of the best performances. The training of the neural network is performed on sub-images (patches) of the pre-processed full images. Each patch, of dimension 48x48, is obtained by randomly selecting its center inside the full image. Also the patches partially or completely outside the Field Of View (FOV) are selected, in this way the neural network learns how to discriminate the FOV border from blood vessels. A set of 190000 patches is obtained by randomly extracting 9500 patches in each of the 20 DRIVE training images. Although the patches overlap, i.e. different patches may contain same part of the original images, no further data augmentation is performed. The first 90% of the dataset is used for training (171000 patches), while the last 10% is used for validation (19000 patches).
See the "test" directory for examples of dataset usage.
nlp data-loader deep-learning pytorch datasetPyTorch tutorials and fun projects including neural talk, neural style, poem writing, anime generation
pytorch pytorch-tutorials pytorch-tutorials-cn deep-learning neural-style charrnn gan caption neuraltalk image-classification visdom tensorboard nn tensor autograd jupyter-notebook
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.