ipynb-quicklook - A Quick Look generator for Jupyter/IPython notebooks without further dependencies

  •        55

Note: This plugin has now been integrated into a native macOS app, Jupyter Notebook Viewer. A stand-alone Quick Look generator for Jupyter/IPython notebooks on macOS. Contents are rendered on-the-fly using nbviewer.js.

https://github.com/tuxu/ipynb-quicklook

Tags
Implementation
License
Platform

   




Related Projects

nbviewer - Nbconvert as a webservice (rendering ipynb to static HTML)

  •    Python

Jupyter nbviewer is the web application behind The Jupyter Notebook Viewer, which is graciously hosted by Rackspace. Run this locally to get most of the features of nbviewer on your own network.

bokeh-notebooks - Interactive Web Plotting with Bokeh in IPython notebook

  •    Jupyter

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. These Jupyter notebooks provide useful Bokeh examples and a tutorial to get started. You can visualize the rendered Jupyter notebooks on NBViewer or download the repository and execute jupyter notebook from your terminal.

python_intro - Jupyter notebooks in Russian

  •    Jupyter

В курсе рассматриваются основы програмирования на языке Python, а также есть материал про базовые алгоритмы и структуры данных. Более расширенная версия именно по основам Python – в этом репозитории курса ВШЭ "Интеллектуальный анализ данных". Курс разработан в виде тетрадок Jupyter - это удобное средство представления материала с интерактивным выполнением кода. Инструкции по локальному развертыванию сервера Jupyter для использования тетрадок представлены в тетрадке с обзором средств разработки.

pelican-ipynb - Pelican plugin for blogging with Jupyter/IPython Notebooks

  •    Jupyter

Python 2.7 and 3.4 are supported. See below for additional settings in your pelicanconf.py, depending on the mode you are using.

python-machine-learning-book-2nd-edition - The "Python Machine Learning (2nd edition)" book code repository and info resource

  •    Jupyter

Python Machine Learning, 2nd Ed. To access the code materials for a given chapter, simply click on the open dir links next to the chapter headlines to navigate to the chapter subdirectories located in the code/ subdirectory. You can also click on the ipynb links below to open and view the Jupyter notebook of each chapter directly on GitHub.


jupyter-vim-binding - Jupyter meets Vim. Vimmer will fall in love.

  •    Javascript

Do you use Vim? And you need to use Jupyter Notebook? This is a Jupyter Notebook (formerly known as IPython Notebook) extension to enable Vim like environment powered by CodeMirror's Vim. I'm sure that this plugin helps to improve your QOL. While I changed my job, I don't use jupyter notebook and I can't make enough time to maintain this plugin.

Complete-Python-Bootcamp - Lectures for Udemy - Complete Python Bootcamp Course

  •    Jupyter

This is the Repository for the Udemy course - "Complete Python Bootcamp". In this repo you will find all the accompanying Jupyter (p.k.a. iPython) Notebooks for the course. For quicker view rendering and simpler downloading procedures, you can check out this repo using NbViewer.

dashboards - Jupyter Dashboards Layout Extension

  •    Jupyter

The dashboards layout extension is an add-on for Jupyter Notebook. It lets you arrange your notebook outputs (text, plots, widgets, ...) in grid- or report-like layouts. It saves information about your layouts in your notebook document. Other people with the extension can open your notebook and view your layouts. For a sample of what's possible with the dashboard layout extension, have a look at the demo dashboard-notebooks in this repository.

IRkernel - R kernel for Jupyter

  •    Jupyter

Now both R versions are available as an R kernel in the notebook. If you have Jupyter installed, you can create a notebook using IRkernel from the dropdown menu.

IfSharp - F# for Jupyter Notebooks

  •    Jupyter

This is the F# implementation for Jupyter. View the Feature Notebook for some of the features that are included.You can use Jupyter F# Notebooks for free (with free server-side execution) at Azure Notebooks. If you select "Show me some samples", then there is an "Introduction to F#" which guides you through the language and its use in Jupyter.

CADL - Course materials/Homework materials for the FREE MOOC course on "Creative Applications of Deep Learning w/ Tensorflow" #CADL

  •    Jupyter

This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for the first of three Kadenze Academy courses on Creative Applications of Deep Learning w/ Tensorflow. It also contains a python package containing all the code developed during all three courses. The first course makes heavy usage of Jupyter Notebook. This will be necessary for submitting the homeworks and interacting with the guided session notebooks I will provide for each assignment. Follow along this guide and we'll see how to obtain all of the necessary libraries that we'll be using. By the end of this, you'll have installed Jupyter Notebook, NumPy, SciPy, and Matplotlib. While many of these libraries aren't necessary for performing the Deep Learning which we'll get to in later lectures, they are incredibly useful for manipulating data on your computer, preparing data for learning, and exploring results.

a-2017 - Public Repository for cs109a, 2017 edition

  •    Jupyter

For students not having access to canvas as yet, HW 0 is cs109a_hw0.ipynb in this folder. The due date is Sep 8th, 11:59PM. Registered students should upload both a notebook and a pdf produced from the notebook (use the browser print function) to canvas. Students who are not yet registered, such as MIT students, should email cs109a2017@gmail.com with these two files attached. The Lab and Lecture material can be accessed from the respective folders.

jupyter-scala - Lightweight Scala kernel for Jupyter / IPython 3

  •    Scala

Jupyter Scala is a Scala kernel for Jupyter. It aims at being a versatile and easily extensible alternative to other Scala kernels or notebook UIs, building on both Jupyter and Ammonite. The current version is available for Scala 2.11. Support for Scala 2.10 could be added back, and 2.12 should be supported soon (via ammonium / Ammonite).

jupyter-themes - Custom Jupyter Notebook Themes

  •    CSS

While I love my job as a researcher, it doesn't exactly bring home the bacon. I mean.. it brings home some bacon... but like... not enough bacon? Right. Anyway, a colleague suggested I add an optional donation badge so users can help support projects like jupyter-themes (and the forthcoming lab-themes which will give users similar control over the look and feel of Jupyter Lab. Currently in early stages of development). I firmly believe that software is best served open and, as such, am committed to providing free and easy access to all my code. So if you can't make a financial contribution, then don't and pip install it anyway! But if you're sitting on some extra cash and enjoy using a package I've developed, then any amount helps and I greatly appreciate it.

scikit-learn-videos - Jupyter notebooks from the scikit-learn video series

  •    Jupyter

This video series will teach you how to solve machine learning problems using Python's popular scikit-learn library. It was featured on Kaggle's blog in 2015. There are 9 video tutorials totaling 4 hours, each with a corresponding Jupyter notebook. The notebook contains everything you see in the video: code, output, images, and comments.

jupyterlab - JupyterLab computational environment.

  •    Javascript

An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture. Currently ready for users. JupyterLab is the next-generation user interface for Project Jupyter. It offers all the familiar building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file browser, rich outputs, etc.) in a flexible and powerful user interface. Eventually, JupyterLab will replace the classic Jupyter Notebook.

machine_learning_basics - Plain python implementations of basic machine learning algorithms

  •    Jupyter

This repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

livelossplot - Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

  •    Python

A live training loss plot in Jupyter Notebook for Keras, PyTorch and other frameworks. An open source Python package by Piotr Migdał et al. Visual feedback allows us to keep track of the training process. Now there is one for Jupyter.

jupyterhub - Multi-user server for Jupyter notebooks

  •    Python

With JupyterHub you can create a multi-user Hub which spawns, manages, and proxies multiple instances of the single-user Jupyter notebook server. Project Jupyter created JupyterHub to support many users. The Hub can offer notebook servers to a class of students, a corporate data science workgroup, a scientific research project, or a high performance computing group.