minimal_glo - Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

  •        3

I'm not one of the authors. I just reimplemented parts of the paper in PyTorch for learning about PyTorch and generative models. Also, I liked the idea in the paper and was surprised that the approach actually works. Implementation of the Laplacian pyramid L1 loss is inspired by https://github.com/mtyka/laploss. DCGAN network architecture follows https://github.com/pytorch/examples/tree/master/dcgan.

https://github.com/tneumann/minimal_glo

Tags
Implementation
License
Platform

   




Related Projects

semi-supervised-pytorch - Implementations of different VAE-based semi-supervised and generative models in PyTorch

  •    Python

A PyTorch-based package containing useful models for modern deep semi-supervised learning and deep generative models. Want to jump right into it? Look into the notebooks. 2018.04.17 - The Gumbel softmax notebook has been added to show how you can use discrete latent variables in VAEs. 2018.02.28 - The β-VAE notebook was added to show how VAEs can learn disentangled representations.

nips14-ssl - Code for reproducing results of NIPS 2014 paper "Semi-Supervised Learning with Deep Generative Models"

  •    Python

Code for reproducing some key results of our NIPS 2014 paper on semi-supervised learning (SSL) with deep generative models. Please cite this paper when using this code for your research.

tflearn - Deep learning library featuring a higher-level API for TensorFlow.

  •    Python

TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

Pyro - Deep universal probabilistic programming with Python and PyTorch

  •    Python

Pyro is a universal probabilistic programming language (PPL) written in Python and supported by PyTorch on the backend. Pyro enables flexible and expressive deep probabilistic modeling, unifying the best of modern deep learning and Bayesian modeling.


PocketFlow - An Automatic Model Compression (AutoMC) framework for developing smaller and faster AI applications

  •    Python

PocketFlow is an open-source framework for compressing and accelerating deep learning models with minimal human effort. Deep learning is widely used in various areas, such as computer vision, speech recognition, and natural language translation. However, deep learning models are often computational expensive, which limits further applications on mobile devices with limited computational resources. PocketFlow aims at providing an easy-to-use toolkit for developers to improve the inference efficiency with little or no performance degradation. Developers only needs to specify the desired compression and/or acceleration ratios and then PocketFlow will automatically choose proper hyper-parameters to generate a highly efficient compressed model for deployment.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

Keras-GAN - Keras implementations of Generative Adversarial Networks.

  •    Python

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed. Implementation of Auxiliary Classifier Generative Adversarial Network.

seq2seq - Sequence to Sequence Learning with Keras

  •    Python

Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python deep learning library Keras. Using Seq2Seq, you can build and train sequence-to-sequence neural network models in Keras. Such models are useful for machine translation, chatbots (see [4]), parsers, or whatever that comes to your mind. That's it! You have successfully compiled a minimal Seq2Seq model! Next, let's build a 6 layer deep Seq2Seq model (3 layers for encoding, 3 layers for decoding).

RLSeq2Seq - Deep Reinforcement Learning For Sequence to Sequence Models

  •    Python

NOTE: THE CODE IS UNDER DEVELOPMENT, PLEASE ALWAYS PULL THE LATEST VERSION FROM HERE. In recent years, sequence-to-sequence (seq2seq) models are used in a variety of tasks from machine translation, headline generation, text summarization, speech to text, to image caption generation. The underlying framework of all these models are usually a deep neural network which contains an encoder and decoder. The encoder processes the input data and a decoder receives the output of the encoder and generates the final output. Although simply using an encoder/decoder model would, most of the time, produce better result than traditional methods on the above-mentioned tasks, researchers proposed additional improvements over these sequence to sequence models, like using an attention-based model over the input, pointer-generation models, and self-attention models. However, all these seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently a completely fresh point of view emerged in solving these two problems in seq2seq models by using methods in Reinforcement Learning (RL). In these new researches, we try to look at the seq2seq problems from the RL point of view and we try to come up with a formulation that could combine the power of RL methods in decision-making and sequence to sequence models in remembering long memories. In this paper, we will summarize some of the most recent frameworks that combines concepts from RL world to the deep neural network area and explain how these two areas could benefit from each other in solving complex seq2seq tasks. In the end, we will provide insights on some of the problems of the current existing models and how we can improve them with better RL models. We also provide the source code for implementing most of the models that will be discussed in this paper on the complex task of abstractive text summarization.

ludwig - Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code

  •    Python

Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.

Generative-Adversarial-Networks - Tutorial on GANs

  •    Jupyter

My blog post on GANs and overview of some associated papers. Generative adversarial networks (GANs) are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

Kur - Descriptive Deep Learning

  •    Python

Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

Apache Singa - Distributed Deep Learning Platform

  •    C++

SINGA is a distributed deep learning platform for big data analytics. It supports various deep learning models, and thus has the flexibility to allow users to customize the models that fit their business requirements. It provides a scalable architecture to train deep learning models from huge volumes of data and it makes the distributed training process transparent to users.

models - The ONNX Model Zoo is a collection of pre-trained, state-of-the-art models in the ONNX format

  •    Jupyter

The ONNX Model Zoo is a collection of pre-trained models for state-of-the-art models in deep learning, available in the ONNX format. Accompanying each model are Jupyter notebooks for model training and running inference with the trained model. The notebooks are written in Python and include links to the training dataset as well as references to the original paper that describes the model architecture. The notebooks can be exported and run as python(.py) files. The Open Neural Network eXchange (ONNX) is a open format to represent deep learning models. With ONNX, developers can move models between state-of-the-art tools and choose the combination that is best for them. ONNX is developed and supported by a community of partners.

spotlight - Deep recommender models using PyTorch.

  •    Python

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. See the full documentation for details.

generative-models - Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

  •    Python

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Generated samples will be stored in GAN/{gan_model}/out (or VAE/{vae_model}/out, etc) directory during training.

raster-vision - deep learning for aerial/satellite imagery

  •    Python

Note: this project is under development and may be difficult to use at the moment. The overall goal of Raster Vision is to make it easy to train and run deep learning models over aerial and satellite imagery. At the moment, it includes functionality for making training data, training models, making predictions, and evaluating models for the task of object detection implemented via the Tensorflow Object Detection API. It also supports running experimental workflows using AWS Batch. The library is designed to be easy to extend to new data sources, machine learning tasks, and machine learning implementation.

deepnlp - Deep Learning NLP Pipeline implemented on Tensorflow

  •    Python

Deep Learning NLP Pipeline implemented on Tensorflow. Following the 'simplicity' rule, this project aims to use the deep learning library of Tensorflow to implement new NLP pipeline. You can extend the project to train models with your own corpus/languages. Pretrained models of Chinese corpus are distributed. Free RESTful NLP API are also provided. Visit http://www.deepnlp.org/api/v1.0/pipeline for details. 下载预训练模型 If you install deepnlp via pip, the pre-trained models are not distributed due to size restriction. You can download full models for 'Segment', 'POS' en and zh, 'NER' zh, zh_entertainment, zh_o2o, 'Textsum' by calling the download function.

edward - A probabilistic programming language in TensorFlow

  •    Jupyter

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on top of TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard.