WantWords - An open-source online reverse dictionary

  •        106

WantWords is an open-source online reverse dictionary. Reverse dictionary is an opposite to a regular (forward) dictionary that provides definitions for query words, a reverse dictionary returns words semantically matching the query descriptions.

https://github.com/thunlp/WantWords
https://wantwords.thunlp.org/home/

Tags
Implementation
License
Platform

   




Related Projects

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

pattern - Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization

  •    Python

It is well documented, thoroughly tested with 350+ unit tests and comes bundled with 50+ examples. The source code is licensed under BSD and available from http://www.clips.ua.ac.be/pages/pattern. This example trains a classifier on adjectives mined from Twitter using Python 3. First, tweets that contain hashtag #win or #fail are collected. For example: "$20 tip off a sweet little old lady today #win". The word part-of-speech tags are then parsed, keeping only adjectives. Each tweet is transformed to a vector, a dictionary of adjective → count items, labeled WIN or FAIL. The classifier uses the vectors to learn which other tweets look more like WIN or more like FAIL.

gensim - Topic Modelling for Humans

  •    Python

Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

BioSentVec - BioWordVec & BioSentVec: pre-trained embeddings for biomedical words and sentences

  •    Jupyter

We created biomedical word and sentence embeddings using PubMed and the clinical notes from MIMIC-III Clinical Database. Both PubMed and MIMIC-III texts were split and tokenized using NLTK. We also lowercased all the words. The statistics of the two corpora are shown below. We applied fastText to compute 200-dimensional word embeddings. We set the window size to be 20, learning rate 0.05, sampling threshold 1e-4, and negative examples 10. Both the word vectors and the model with hyperparameters are available for download below. The model file can be used to compute word vectors that are not in the dictionary (i.e. out-of-vocabulary terms). This work extends the original BioWordVec which provides fastText word embeddings trained using PubMed and MeSH. We used the same parameters as the original BioWordVec which has been thoroughly evaluated in a range of applications.


pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

CoreNLP - Stanford CoreNLP: A Java suite of core NLP tools.

  •    Java

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. It provides the foundational building blocks for higher level text understanding applications.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

spark-nlp - Natural Language Understanding Library for Apache Spark.

  •    Jupyter

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

nlp-architect - NLP Architect by Intel AI Lab: Python library for exploring the state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding

  •    Python

NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding. It is intended to be a platform for future research and collaboration. Framework documentation on NLP models, algorithms, and modules, and instructions on how to contribute can be found at our main documentation site.

magnitude - A fast, efficient universal vector embedding utility package.

  •    Python

A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim, but can be used as a generic key-vector store for domains outside NLP. Vector space embedding models have become increasingly common in machine learning and traditionally have been popular for natural language processing applications. A fast, lightweight tool to consume these large vector space embedding models efficiently is lacking.

cogcomp-nlp - CogComp's Natural Language Processing libraries and Demos:

  •    Java

This project collects a number of core libraries for Natural Language Processing (NLP) developed by Cognitive Computation Group. Each library contains detailed readme and instructions on how to use it. In addition the javadoc of the whole project is available here.

NLP-progress - Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks

  •    HTML

This document aims to track the progress in Natural Language Processing (NLP) and give an overview of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets. It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging as well as more recent ones such as reading comprehension and natural language inference. The main objective is to provide the reader with a quick overview of benchmark datasets and the state-of-the-art for their task of interest, which serves as a stepping stone for further research. To this end, if there is a place where results for a task are already published and regularly maintained, such as a public leaderboard, the reader will be pointed there.

nlp-architect - A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

  •    Python

NLP Architect is an open source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding Neural Networks. NLP Architect is an NLP library designed to be flexible, easy to extend, allow for easy and rapid integration of NLP models in applications and to showcase optimized models.

transformers - 🤗Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX

  •    Python

🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone. 🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

text2vec - Fast vectorization, topic modeling, distances and GloVe word embeddings in R.

  •    R

text2vec is an R package which provides an efficient framework with a concise API for text analysis and natural language processing (NLP). To learn how to use this package, see text2vec.org and the package vignettes. See also the text2vec articles on my blog.

nlp_tasks - Natural Language Processing Tasks and References

  •    

I've been working on several natural language processing tasks for a long time. One day, I felt like drawing a map of the NLP field where I earn a living. I'm sure I'm not the only person who wants to see at a glance which tasks are in NLP. Reviewed and updated by YJ Choe on Oct. 18, 2017.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

fastText_multilingual - Multilingual word vectors in 78 languages

  •    Jupyter

Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; meaning that while similar words within a language share similar vectors, translation words from different languages do not have similar vectors. In a recent paper at ICLR 2017, we showed how the SVD can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single vector space. In this repository we provide 78 matrices, which can be used to align the majority of the fastText languages in a single space. Word embeddings define the similarity between two words by the normalised inner product of their vectors. The matrices in this repository place languages in a single space, without changing any of these monolingual similarity relationships. When you use the resulting multilingual vectors for monolingual tasks, they will perform exactly the same as the original vectors. To learn more about word embeddings, check out Colah's blog or Sam's introduction to vector representations.

nlp_newsletter - 📰Natural language processing (NLP) newsletter

  •    

The NLP newsletter provides (weekly or biweekly) quick summaries of some of the latest natural language processing (NLP) and machine learning (ML) stories across a range of important categories such as fairness & ethics, society, educational resources, publications, etc. Want your story or project to be featured in the NLP Newsletter? Reach out via ellfae@gmail.com or Twitter. If you are interested in translating any of the NLP Newsletter issues, you can check out this GitHub issue.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.