- 31

This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help towards resolving the issues currently open.

https://github.com/tensorflow/cleverhansTags | machine-learning security benchmarking |

Implementation | Python |

License | MIT |

Platform | Windows Linux |

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

Android TensorFlow Lite Machine Learning Example

tensorflow tensorflow-tutorials machine-learning tensorflow-lite tensorflow-examples deep-learning deep-neural-networks android-example machine-learning-algorithms tfliteThis is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

tensorflow machine-learning regression convolutional-neural-networks logistic-regression book reinforcement-learning autoencoder linear-regression classification clusteringDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningA generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

image-detection machine-learning deep-learning deep-neural-networks convolutional-neural-networks tensorflowAndroid TensorFlow MachineLearning Example (Building TensorFlow for Android)

tensorflow tensorflow-tutorials tensorflow-android machine-learning machine-learning-android tensorflow-models tensorflow-examples deep-learning deep-neural-networks deeplearning deep-learning-tutorialAll pull requests are welcome, make sure to follow the contribution guidelines when you submit pull request.

tensorflow tensorflow-tutorials mnist-classification mnist machine-learning android tensorflow-models machine-learning-android tensorflow-android tensorflow-model mnist-model deep-learning deep-neural-networks deeplearning deep-learning-tutorialA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! 😀)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkThis chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.

tensorflow tensorflow-cookbook linear-regression neural-network tensorflow-algorithms rnn cnn svm nlp packtpub machine-learning tensorboard classification regression kmeans-clustering genetic-algorithm odeTensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.

tensorflow node-tensorflow nodejs machine-learning deep-learning npm-package tf tensor ml ai neural-networks neuralnetworks deeplearning model numerical-computation googleSwift for TensorFlow is a new way to develop machine learning models. It gives you the power of TensorFlow directly integrated into the Swift programming language. With Swift, you can write the following imperative code, and Swift automatically turns it into a single TensorFlow Graph and runs it with the full performance of TensorFlow Sessions on CPU, GPU and TPU. Swift combines the flexibility of Eager Execution with the high performance of Graphs and Sessions. Behind the scenes, Swift analyzes your Tensor code and automatically builds graphs for you. Swift also catches type errors and shape mismatches before running your code, and has Automatic Differentiation built right in. We believe that machine learning tools are so important that they deserve a first-class language and a compiler.

machine-learning automatic-differentiation compilerSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnTensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models. In particular, it provides modules, which are pre-trained pieces of TensorFlow models that can be reused on new tasks. If you'd like to contribute to TensorFlow Hub, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

tensorflow machine-learning transfer-learning embeddings image-classification mlTensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFlow ecosystem, TensorFlow Probability provides integration of probabilistic methods with deep networks, gradient-based inference via automatic differentiation, and scalability to large datasets and models via hardware acceleration (e.g., GPUs) and distributed computation. Our probabilistic machine learning tools are structured as follows.

tensorflow bayesian-methods deep-learning machine-learning data-science neural-networks statistics probabilistic-programmingSimple TensorFlow Serving is the generic and easy-to-use serving service for machine learning models. Read more in https://stfs.readthedocs.io. Install the server with pip.

tensorflow-models savedmodel tensorflow serving client http machine-learning deep-learningGorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow. The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

machine-learning artificial-intelligence neural-network computation-graph differentiation gradient-descent gorgonia deep-learning deeplearning deep-neural-networks automatic-differentiation symbolic-differentiationNeural Machine Translation with Keras (Theano and Tensorflow). for obtaining the required packages for running this library.

neural-machine-translation keras deep-learning sequence-to-sequence theano machine-learning nmt machine-translation lstm-networks gru tensorflow attention-mechanism web-demo transformer attention-is-all-you-need attention-model attention-seq2seqTensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

tensorlayer deep-learning tensorflow machine-learning data-science neural-network reinforcement-learning artificial-intelligence gan a3c tensorflow-tutorials dqn object-detection chatbot tensorflow-tutorial imagenet google"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networksThis is a bare bones example of TensorFlow, a machine learning package published by Google. You will not find a simpler introduction to it. In each example, a straight line is fit to some data. Values for the slope and y-intercept of the line that best fit the data are determined using gradient descent. If you do not know about gradient descent, check out the Wikipedia page.

tensorflow tensorflow-tutorials distributed-computing simple big-data linear-regression tensorflow-examples tensorflow-exercises
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**