sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •        385

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

https://sod.pixlab.io
https://github.com/symisc/sod

Tags
Implementation
License
Platform

   




Related Projects

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

darkflow - Translate darknet to tensorflow

  •    Python

Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

PyCNN - Image Processing with Cellular Neural Networks in Python

  •    Python

Cellular Neural Networks (CNN) [wikipedia] [paper] are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors. This python library is the implementation of CNN for the application of Image Processing.


Deep-Learning-with-Keras - Code repository for Deep Learning with Keras published by Packt

  •    Jupyter

This is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

jetson-inference - Guide to deploying deep-learning inference networks and deep vision primitives with TensorRT and NVIDIA Jetson

  •    C++

Welcome to our training guide for inference and deep vision runtime library for NVIDIA DIGITS and Jetson Xavier/TX1/TX2. This repo uses NVIDIA TensorRT for efficiently deploying neural networks onto the embedded platform, improving performance and power efficiency using graph optimizations, kernel fusion, and half-precision FP16 on the Jetson.

detection-2016-nipsws - Hierarchical Object Detection with Deep Reinforcement Learning

  •    Python

We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal.

lightnet - 🌓 Bringing pjreddie's DarkNet out of the shadows #yolo

  •    C

LightNet provides a simple and efficient Python interface to DarkNet, a neural network library written by Joseph Redmon that's well known for its state-of-the-art object detection models, YOLO and YOLOv2. LightNet's main purpose for now is to power Prodigy's upcoming object detection and image segmentation features. However, it may be useful to anyone interested in the DarkNet library. Once you've downloaded LightNet, you can install a model using the lightnet download command. This will save the models in the lightnet/data directory. If you've installed LightNet system-wide, make sure to run the command as administrator.

clDNN - Compute Library for Deep Neural Networks (clDNN)

  •    C++

Compute Library for Deep Neural Networks (clDNN) is an open source performance library for Deep Learning (DL) applications intended for acceleration of DL Inference on Intel® Processor Graphics – including HD Graphics and Iris® Graphics. clDNN includes highly optimized building blocks for implementation of convolutional neural networks (CNN) with C and C++ interfaces. We created this project to enable the DL community to innovate on Intel® processors. Usages supported: Image recognition, image detection, and image segmentation.

jeelizWeboji - JavaScript/WebGL real-time face tracking and expression detection library

  •    Javascript

With this library, you can build your own animoji embedded in Javascript/WebGL applications. You do not need any specific device except a standard webcam. By default a webcam feedback image is displayed with the face detection frame. The face detection is quite robust to all lighting conditions, but the evaluation of expression can be noisy if the lighting is too directional, too weak or if there is an important backlight. So the webcam feedback image is useful to see the quality of the input video feed.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

Surface-Defect-Detection - 📈 Constantly summarizing open source dataset and critical papers in the field of surface defect research which are of great importance

  •    Python

At present, surface defect equipment based on machine vision has widely replaced artificial visual inspection in various industrial fields, including 3C, automobiles, home appliances, machinery manufacturing, semiconductors and electronics, chemical, pharmaceutical, aerospace, light industry and other industries. Traditional surface defect detection methods based on machine vision often use conventional image processing algorithms or artificially designed features plus classifiers. Generally speaking, imaging schemes are usually designed by using the different properties of the inspected surface or defects. A reasonable imaging scheme helps to obtain images with uniform illumination and clearly reflect the surface defects of the object. In recent years, many defect detection methods based on deep learning have also been widely used in various industrial scenarios. Compared with the clear classification, detection and segmentation tasks in computer vision, the requirements for defect detection are very general. In fact, its requirements can be divided into three different levels: "what is the defect" (classification), "where is the defect" (positioning) And "How many defects are" (split).

autogluon - AutoGluon: AutoML for Text, Image, and Tabular Data

  •    Python

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data. Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

darknet_ros - YOLO ROS: Real-Time Object Detection for ROS

  •    C++

This is a ROS package developed for object detection in camera images. You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. For more information about YOLO, Darknet, available training data and training YOLO see the following link: YOLO: Real-Time Object Detection. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. Note: We also provide branches that work under ROS Melodic, ROS Foxy and ROS2.

OpenFace - OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation

  •    C++

Over the past few years, there has been an increased interest in automatic facial behavior analysis and understanding. We present OpenFace – a tool intended for computer vision and machine learning researchers, affective computing community and people interested in building interactive applications based on facial behavior analysis. OpenFace is the first toolkit capable of facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation with available source code for both running and training the models. The computer vision algorithms which represent the core of OpenFace demonstrate state-of-the-art results in all of the above mentioned tasks. Furthermore, our tool is capable of real-time performance and is able to run from a simple webcam without any specialist hardware. OpenFace is an implementation of a number of research papers from the Multicomp group, Language Technologies Institute at the Carnegie Mellon University and Rainbow Group, Computer Laboratory, University of Cambridge. The founder of the project and main developer is Tadas Baltrušaitis.

CV-pretrained-model - A collection of computer vision pre-trained models.

  •    

A pre-trained model is a model created by some one else to solve a similar problem. Instead of building a model from scratch to solve a similar problem, we can use the model trained on other problem as a starting point. A pre-trained model may not be 100% accurate in your application. For example, if you want to build a self learning car. You can spend years to build a decent image recognition algorithm from scratch or you can take inception model (a pre-trained model) from Google which was built on ImageNet data to identify images in those pictures.

saliency - TensorFlow implementation for SmoothGrad, Grad-CAM, Guided backprop, Integrated Gradients and other saliency techniques

  •    Jupyter

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.