- 52

Python codes for common Machine Learning Algorithms

https://github.com/susanli2016/Machine-Learning-with-Python

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceThe Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

machine-learning framework c-sharp nuget visual-studio statistics unity3d neural-network support-vector-machines computer-vision image-processing ffmpegThis chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.

tensorflow tensorflow-cookbook linear-regression neural-network tensorflow-algorithms rnn cnn svm nlp packtpub machine-learning tensorboard classification regression kmeans-clustering genetic-algorithm odePractice and tutorial-style notebooks covering wide variety of machine learning techniques

numpy statistics pandas matplotlib regression scikit-learn classification principal-component-analysis clustering decision-trees random-forest dimensionality-reduction neural-network deep-learning artificial-intelligence data-science machine-learning k-nearest-neighbours naive-bayesCourse materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15).

data-science machine-learning scikit-learn data-analysis pandas jupyter-notebook course linear-regression logistic-regression model-evaluation naive-bayes natural-language-processing decision-trees ensemble-learning clustering regular-expressions web-scraping data-visualization data-cleaningThe Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition. Classification: Adaboost, Decision Tree, Dynamic Time Warping, Gaussian Mixture Models, Hidden Markov Models, k-nearest neighbor, Naive Bayes, Random Forests, Support Vector Machine, Softmax, and more...

gesture-recognition grt machine-learning gesture-recognition-toolkit support-vector-machine random-forest kmeans dynamic-time-warping softmax linear-regressionThis is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

tensorflow machine-learning regression convolutional-neural-networks logistic-regression book reinforcement-learning autoencoder linear-regression classification clusteringThis repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

machine-learning logistic-regression ipynb machine-learning-algorithms linear-regression perceptron python-implementations kmeans algorithm python3 neural-network k-nearest-neighbours k-nearest-neighbor k-nn neural-networksI just built out v2 of this project that now gives you analytics info from your models, and is production-ready. machineJS is an amazing research project that clearly proved there's a hunger for automated machine learning. auto_ml tackles this exact same goal, but with more features, cleaner code, and the ability to be copy/pasted into production.

machine-learning data-science machine-learning-library machine-learning-algorithms ml data-scientists javascript-library scikit-learn kaggle numerai automated-machine-learning automl auto-ml neuralnet neural-network algorithms random-forest svm naive-bayes bagging optimization brainjs date-night sklearn ensemble data-formatting js xgboost scikit-neuralnetwork knn k-nearest-neighbors gridsearch gridsearchcv grid-search randomizedsearchcv preprocessing data-formatter kaggle-competitionApache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

machine-learning classification data-mining fuzzySmile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.

machine-learning nlp linear-algebra natural-language-processingLimdu is a machine-learning framework for Node.js. It supports multi-label classification, online learning, and real-time classification. Therefore, it is especially suited for natural language understanding in dialog systems and chat-bots.Limdu is in an "alpha" state - some parts are working (see this readme), but some parts are missing or not tested. Contributions are welcome.

classifier classification categorization text-classification natural-lanaguage-understanding machine-learning multi-label multilabel multi-class multiclass online-learning naive-bayes winnow perceptron svm linear-svm binary-relevance one-vs-allranger is a fast implementation of random forests (Breiman 2001) or recursive partitioning, particularly suited for high dimensional data. Classification, regression, and survival forests are supported. Classification and regression forests are implemented as in the original Random Forest (Breiman 2001), survival forests as in Random Survival Forests (Ishwaran et al. 2008). Includes implementations of extremely randomized trees (Geurts et al. 2006) and quantile regression forests (Meinshausen 2006). ranger is written in C++, but a version for R is available, too. We recommend to use the R version. It is easy to install and use and the results are readily available for further analysis. The R version is as fast as the standalone C++ version.

The Oryx open source project provides infrastructure for lambda-architecture applications on top of Spark, Spark Streaming and Kafka. On this, it provides further support for real-time, large scale machine learning, and end-to-end applications of this support for common machine learning use cases, like recommendations, clustering, classification and regression.

lambda lambda-architecture oryx apache-spark machine-learning kafka classification clusteringThis library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, etc.), and particularly helpful if you use scikit-learn (although this can work if you have a different algorithm). Just pip install featureforge.

Ytk-learn is a distributed machine learning library which implements most of popular machine learning algorithms

machine-learning distributed gbm gbdt logistic-regression factorization-machines spark hadoopThe mission of ThunderSVM is to help users easily and efficiently apply SVMs to solve problems. ThunderSVM exploits GPUs and multi-core CPUs to achieve high efficiency. It supports all functionalities of LibSVM such as one-class SVMs, SVC, SVR and probabilistic SVMs. It can use same command line options as LibSVM. It supports Python, R and Matlab interfaces.

svm classification regression one-class-learning parallelism cuda support-vector-machineThe datamining Support Vector Machine (SVM) plug-in in MS SQL Server Analysis Services 2008. This plug-in is the SVM classification algorithm in addition to the shipped data mining algorithms with SQL Server.

analysis-services classification classifier data-mining datamining regression smoJubatus is a distributed processing framework and streaming machine learning library. Jubatus includes these functionalities: Online Machine Learning Library: Classification, Regression, Recommendation (Nearest Neighbor Search), Graph Mining, Anomaly Detection, Clustering, Feature Vector Converter (fv_converter): Data Preprocess and Feature Extraction, Framework for Distributed Online Machine Learning with Fault Tolerance.

machine-learning machine-learning-framework distributedMLlib is a Spark implementation of some common machine learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction and lot more.

machine-learning data-mining data-analysis classification
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**