nbinteract - Create interactive webpages from Jupyter Notebooks

  •        20

nbinteract is a Python package that creates interactive webpages from Jupyter notebooks. nbinteract also has built-in support for interactive plotting. These interactions are driven by data, not callbacks, allowing authors to focus on the logic of their programs. Currently, nbinteract is in an alpha stage because of its quickly-changing API.

https://www.nbinteract.com/
https://github.com/SamLau95/nbinteract

Tags
Implementation
License
Platform

   




Related Projects

ipywidgets - Interactive Widgets for the Jupyter Notebook

  •    TypeScript

ipywidgets are interactive HTML widgets for Jupyter notebooks and the IPython kernel. Notebooks come alive when interactive widgets are used. Users gain control of their data and can visualize changes in the data.

learn-python3 - Jupyter notebooks for teaching/learning Python 3

  •    Python

This repository contains a collection of materials for teaching/learning Python 3 (3.5+). If you can not access Python and/or Jupyter Notebook on your machine, you can still follow the web based materials. However, you should be able to use Jupyter Notebook in order to complete the exercises.

bokeh-notebooks - Interactive Web Plotting with Bokeh in IPython notebook

  •    Jupyter

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. These Jupyter notebooks provide useful Bokeh examples and a tutorial to get started. You can visualize the rendered Jupyter notebooks on NBViewer or download the repository and execute jupyter notebook from your terminal.

jupyterlab - JupyterLab computational environment.

  •    Javascript

An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture. Currently ready for users. JupyterLab is the next-generation user interface for Project Jupyter. It offers all the familiar building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file browser, rich outputs, etc.) in a flexible and powerful user interface. Eventually, JupyterLab will replace the classic Jupyter Notebook.

Jupyter - Web-based notebook environment for interactive computing

  •    Python

The Jupyter Notebook is a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more. It supports over 40 programming languages.


geonotebook - A Jupyter notebook extension for geospatial visualization and analysis

  •    Python

GeoNotebook is an application that provides client/server environment with interactive visualization and analysis capabilities using Jupyter, GeoJS and other open source tools. Jointly developed by Kitware and NASA Ames. Documentation for GeoNotebook can be found at http://geonotebook.readthedocs.io.

interactive-deep-colorization - Deep learning software for colorizing black and white images with a few clicks

  •    Jupyter

We first describe the system (0) Prerequisities and steps for (1) Getting started. We then describe the interactive colorization demo (2) Interactive Colorization (Local Hints Network). There are two demos: (a) a "barebones" version in iPython notebook and (b) the full GUI we used in our paper. We then provide an example of the (3) Global Hints Network. We provide a "barebones" demo in iPython notebook, which does not require QT. We also provide our full GUI demo.

beakerx - Beaker Extensions for Jupyter Notebook

  •    Java

BeakerX is a collection of JVM kernels and interactive widgets for plotting, tables, autotranslation, and other extensions to Jupyter Notebook. BeakerX is in beta and under active development. The documentation consists of tutorial notebooks on GitHub. You can try it in the cloud for free with Binder. And here is the cheatsheet.

deepschool.io - Deep Learning tutorials in jupyter notebooks.

  •    Jupyter

See here for installing on windows. 1: Refer to this Dockerfile and this for information on how the docker image was built.

docker-stacks - Ready-to-run Docker images containing Jupyter applications

  •    Dockerfile

Jupyter Docker Stacks are a set of ready-to-run Docker images containing Jupyter applications and interactive computing tools. The two examples below may help you get started if you have Docker installed know which Docker image you want to use, and want to launch a single Jupyter Notebook server in a container.

dashboards - Jupyter Dashboards Layout Extension

  •    Jupyter

The dashboards layout extension is an add-on for Jupyter Notebook. It lets you arrange your notebook outputs (text, plots, widgets, ...) in grid- or report-like layouts. It saves information about your layouts in your notebook document. Other people with the extension can open your notebook and view your layouts. For a sample of what's possible with the dashboard layout extension, have a look at the demo dashboard-notebooks in this repository.

jupyter-vim-binding - Jupyter meets Vim. Vimmer will fall in love.

  •    Javascript

Do you use Vim? And you need to use Jupyter Notebook? This is a Jupyter Notebook (formerly known as IPython Notebook) extension to enable Vim like environment powered by CodeMirror's Vim. I'm sure that this plugin helps to improve your QOL. While I changed my job, I don't use jupyter notebook and I can't make enough time to maintain this plugin.

jupyter-matplotlib - Matplotlib Jupyter Extension

  •    Javascript

Leveraging the Jupyter interactive widgets framework, jupyter-matplotlib enables the interactive features of matplotlib in the Jupyter notebook and in Jupyterlab. Besides, the figure canvas element is a proper Jupyter interactive widget which can be positioned in interactive widget layouts.

IPython - Interactive Computing

  •    Python

IPython provides a rich toolkit to help you make the most of using Python interactively. It provides a Jupyter kernel to work with Python code in Jupyter notebooks and other interactive frontends.

AIND-Recognizer

  •    Jupyter

A template notebook is provided as asl_recognizer.ipynb. The notebook is a combination tutorial and submission document. Some of the codebase and some of your implementation will be external to the notebook. For submission, complete the Submission sections of each part. This will include running your implementations in code notebook cells, answering analysis questions, and passing provided unit tests provided in the codebase and called out in the notebook. This will open the Jupyter Notebook software and notebook in your browser which is where you will directly edit and run your code. Follow the instructions in the notebook for completing the project.

IRkernel - R kernel for Jupyter

  •    Jupyter

Now both R versions are available as an R kernel in the notebook. If you have Jupyter installed, you can create a notebook using IRkernel from the dropdown menu.

CADL - Course materials/Homework materials for the FREE MOOC course on "Creative Applications of Deep Learning w/ Tensorflow" #CADL

  •    Jupyter

This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for the first of three Kadenze Academy courses on Creative Applications of Deep Learning w/ Tensorflow. It also contains a python package containing all the code developed during all three courses. The first course makes heavy usage of Jupyter Notebook. This will be necessary for submitting the homeworks and interacting with the guided session notebooks I will provide for each assignment. Follow along this guide and we'll see how to obtain all of the necessary libraries that we'll be using. By the end of this, you'll have installed Jupyter Notebook, NumPy, SciPy, and Matplotlib. While many of these libraries aren't necessary for performing the Deep Learning which we'll get to in later lectures, they are incredibly useful for manipulating data on your computer, preparing data for learning, and exploring results.

scikit-learn-videos - Jupyter notebooks from the scikit-learn video series

  •    Jupyter

This video series will teach you how to solve machine learning problems using Python's popular scikit-learn library. It was featured on Kaggle's blog in 2015. There are 9 video tutorials totaling 4 hours, each with a corresponding Jupyter notebook. The notebook contains everything you see in the video: code, output, images, and comments.

aima-python - Python implementation of algorithms from Russell And Norvig's "Artificial Intelligence - A Modern Approach"

  •    Jupyter

Python code for the book Artificial Intelligence: A Modern Approach. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. This code requires Python 3.4 or later, and does not run in Python 2. You can install Python or use a browser-based Python interpreter such as repl.it. You can run the code in an IDE, or from the command line with python -i filename.py where the -i option puts you in an interactive loop where you can run Python functions. See jupyter.org for instructions on setting up your own Jupyter notebook environment, or run the notebooks online with try.jupiter.org.