quanteda - An R package for the Quantitative Analysis of Textual Data

  •        17

An R package for managing and analyzing text, created by Kenneth Benoit. Supported by the European Research Council grant ERC-2011-StG 283794-QUANTESS. For more details, see https://docs.quanteda.io/index.html.

https://quanteda.io
https://github.com/quanteda/quanteda

Tags
Implementation
License
Platform

   




Related Projects

text-analytics-with-python - Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, "Text Analytics with Python" published by Apress/Springer

  •    Python

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.

sling - SLING - A natural language frame semantics parser

  •    C++

SLING is a parser for annotating text with frame semantic annotations. It is trained on an annotated corpus using Tensorflow and Dragnn.The parser is a general transition-based frame semantic parser using bi-directional LSTMs for input encoding and a Transition Based Recurrent Unit (TBRU) for output decoding. It is a jointly trained model using only the text tokens as input and the transition system has been designed to output frame graphs directly without any intervening symbolic representation.

text2vec - Fast vectorization, topic modeling, distances and GloVe word embeddings in R.

  •    R

text2vec is an R package which provides an efficient framework with a concise API for text analysis and natural language processing (NLP). To learn how to use this package, see text2vec.org and the package vignettes. See also the text2vec articles on my blog.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

WikiSQL - A large annotated semantic parsing corpus for developing natural language interfaces.

  •    HTML

A large crowd-sourced dataset for developing natural language interfaces for relational databases. WikiSQL is the dataset released along with our work Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning.


stealth - An open source Ruby framework for conversational voice and text chatbots. 🤖

  •    Ruby

Stealth is a Ruby based framework for creating conversational (voice & chat) bots. It's design is inspired by Ruby on Rails's philosophy of convention over configuration. It has an MVC architecture with the slight caveat that views are aptly named replies. Stealth is extensible. All service integrations are split out into separate Ruby Gems. Things like analytics and natural language processing (NLP) can be added in as gems as well.

delta - DELTA is a deep learning based natural language and speech processing platform.

  •    Python

DELTA is a deep learning based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. For details of DELTA, please refer to this paper.

tidytext - Text mining using dplyr, ggplot2, and other tidy tools :sparkles::page_facing_up::sparkles::page_facing_up::sparkles:

  •    R

Using tidy data principles can make many text mining tasks easier, more effective, and consistent with tools already in wide use. Much of the infrastructure needed for text mining with tidy data frames already exists in packages like dplyr, broom, tidyr and ggplot2. In this package, we provide functions and supporting data sets to allow conversion of text to and from tidy formats, and to switch seamlessly between tidy tools and existing text mining packages. Check out our book to learn more about text mining using tidy data principles. This function uses the tokenizers package to separate each line into words. The default tokenizing is for words, but other options include characters, n-grams, sentences, lines, paragraphs, or separation around a regex pattern.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

treat - Natural language processing framework for Ruby.

  •    Ruby

Treat is a toolkit for natural language processing and computational linguistics in Ruby. The Treat project aims to build a language- and algorithm- agnostic NLP framework for Ruby with support for tasks such as document retrieval, text chunking, segmentation and tokenization, natural language parsing, part-of-speech tagging, keyword extraction and named entity recognition. Learn more by taking a quick tour or by reading the manual. I am actively seeking developers that can help maintain and expand this project. You can find a list of ideas for contributing to the project here.

pytextrank - Python implementation of TextRank for text document NLP parsing and summarization

  •    Jupyter

Python implementation of TextRank, based on the Mihalcea 2004 paper. The results produced by this implementation are intended more for use as feature vectors in machine learning, not as academic paper summaries.

snips-nlu - Snips Python library to extract meaning from text

  •    Python

Snips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.

TextBlob - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more

  •    Python

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

CoreNLP - Stanford CoreNLP: A Java suite of core NLP tools.

  •    Java

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. It provides the foundational building blocks for higher level text understanding applications.