breakDown - Model Agnostics breakDown plots

  •        2

The breakDown package is a model agnostic tool for decomposition of predictions from black boxes. Break Down Table shows contributions of every variable to a final prediction. Break Down Plot presents variable contributions in a concise graphical way. This package works for binary classifiers and general regression models.

https://pbiecek.github.io/breakDown/
https://github.com/pbiecek/breakDown

Tags
Implementation
License
Platform

   




Related Projects

DALEX - Descriptive mAchine Learning EXplanations

  •    R

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.

AIX360 - Interpretability and explainability of data and machine learning models

  •    Python

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

interpret - Fit interpretable models. Explain blackbox machine learning.

  •    C++

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.


mindsdb - Machine Learning in one line of code

  •    Python

MindsDB's is an Explainable AutoML framework for developers. MindsDB is an automated machine learning platform that allows anyone to gain powerful insights from their data. With MindsDB, users can get fast, accurate, and interpretable answers to any of their data questions within minutes.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

OpenML - Open Machine Learning

  •    CSS

We are a group of people who are excited about open science, open data and machine learning. We want to make machine learning and data analysis simple, accessible, collaborative and open with an optimal division of labour between computers and humans. OpenML is an online machine learning platform for sharing and organizing data, machine learning algorithms and experiments. It is designed to create a frictionless, networked ecosystem, that you can readily integrate into your existing processes/code/environments, allowing people all over the world to collaborate and build directly on each other’s latest ideas, data and results, irrespective of the tools and infrastructure they happen to use.

Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

DataScienceR - a curated list of R tutorials for Data Science, NLP and Machine Learning

  •    R

This repo contains a curated list of R tutorials and packages for Data Science, NLP and Machine Learning. This also serves as a reference guide for several common data analysis tasks. Curated list of Python tutorials for Data Science, NLP and Machine Learning.

DataSciencePython - common data analysis and machine learning tasks using python

  •    Python

This repo contains a curated list of Python tutorials for Data Science, NLP and Machine Learning. Curated list of R tutorials for Data Science, NLP and Machine Learning.

data-science-your-way - Ways of doing Data Science Engineering and Machine Learning in R and Python

  •    Jupyter

These series of tutorials on Data Science engineering will try to compare how different concepts in the discipline can be implemented in the two dominant ecosystems nowadays: R and Python. We will do this from a neutral point of view. Our opinion is that each environment has good and bad things, and any data scientist should know how to use both in order to be as prepared as posible for job market or to start personal project.

machine-learning - :earth_americas: machine learning algorithms tutorials (mainly in Python3)

  •    HTML

This is a continuously updated repository that documents personal journey on learning data science, machine learning related topics. Forecasting methods for timeseries-based data.

awesome-datascience - :memo: An awesome Data Science repository to learn and apply for real world problems

  •    

An open source Data Science repository to learn and apply towards solving real world problems. First of all, Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing suggestions from the data and creating predictions about the future. Here you can find the biggest question for Data Science and hundreds of answers from experts. Our favorite data scientist is Clare Corthell. She is an expert in data-related systems and a hacker, and has been working on a company as a data scientist. Clare's blog. This website helps you to understand the exact way to study as a professional data scientist.

Agile_Data_Code_2 - Code for Agile Data Science 2.0, O'Reilly 2017, Second Edition

  •    Jupyter

Like my work? I am Principal Consultant at Data Syndrome, a consultancy offering assistance and training with building full-stack analytics products, applications and systems. Find us on the web at datasyndrome.com. There is now a video course using code from chapter 8, Realtime Predictive Analytics with Kafka, PySpark, Spark MLlib and Spark Streaming. Check it out now at datasyndrome.com/video.

Data-Analysis-and-Machine-Learning-Projects - Repository of teaching materials, code, and data for my data analysis and machine learning projects

  •    Jupyter

This is a repository of teaching materials, code, and data for my data analysis and machine learning projects.Each repository will (usually) correspond to one of the blog posts on my web site.

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.