This chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.
https://www.packtpub.com/big-data-and-business-intelligence/tensorflow-machine-learning-cookbook-second-editionTags | tensorflow tensorflow-cookbook linear-regression neural-network tensorflow-algorithms rnn cnn svm nlp packtpub machine-learning tensorboard classification regression kmeans-clustering genetic-algorithm ode |
Implementation | Jupyter Notebook |
License | MIT |
Platform |
This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.
tensorflow machine-learning regression convolutional-neural-networks logistic-regression book reinforcement-learning autoencoder linear-regression classification clusteringThis is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.
In these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. All methods mentioned below have their video and text tutorial in Chinese. Visit 莫烦 Python for more.
tensorflow tensorflow-tutorials gan generative-adversarial-network rnn cnn classification regression autoencoder deep-q-network dqn machine-learning tutorial dropout neural-networkThe Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.
neural-machine-translation tensorflow nlp sequence-to-sequence neural-networks nmt machine-translation mt deep-learning image-captioning encoder-decoder gpuDeep learning is one of the most popular domains in the artificial intelligence (AI) space, which allows you to develop multi-layered models of varying complexities. This book is designed to help you grasp things, from basic deep learning algorithms to the more advanced algorithms. The book is designed in a way that first you will understand the algorithm intuitively, once you have a basic understanding of the algorithms, then you will master the underlying math behind them effortlessly and then you will learn how to implement them using TensorFlow step by step. The book covers almost all the state of the art deep learning algorithms. First, you will get a good understanding of the fundamentals of neural networks and several variants of gradient descent algorithms. Later, you will explore RNN, Bidirectional RNN, LSTM, GRU, seq2seq, CNN, capsule nets and more. Then, you will master GAN and various types of GANs and several different autoencoders.
tensorflow word-embeddings gru autoencoder gans doc2vec skip-thoughts adagrad cyclegan deep-learning-mathematics capsule-network few-shot-learning quick-thought deep-learning-scratch nadam deep-learning-math lstm-math cnn-math rnn-derivation contractive-autonencodersWhile research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.
tensorlayer tensorflow deep-learning machine-learning data-science neural-network reinforcement-learning neural-networks tensorflow-tutorials tensorflow-models computer-vision tensorflow-framework tensorflow-library tflearn keras tensorboard nlp natural-language-processing lasagne tensorflow-experimentsThis code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.
text-classification convolutional-neural-networks tensorflow cnn deep-learning chinese nlpSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.
recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnPython codes for common Machine Learning Algorithms
linear-regression polynomial-regression logistic-regression decision-trees random-forest svm svr knn-classification naive-bayes-classifier kmeans-clustering hierarchical-clustering pca lda xgboost-algorithmCompared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.
machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognitionCNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy. Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.
tensorflow deep-learning machine-learningThe Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.
machine-learning framework c-sharp nuget visual-studio statistics unity3d neural-network support-vector-machines computer-vision image-processing ffmpegThis repository allows you to get started with training a State-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset and you can start the training right away and monitor it with TensorBoard. You can even test your model with our built-in Inference REST API. Training with TensorFlow has never been so easy.
docker gui deep-neural-networks computer-vision deep-learning neural-network tensorflow rest-api tensorboard resnet deeplearning object-detection nvidia-docker computervision objectdetection no-code tensorflow-training detection-api tensorflow-gui inference-apiThis is a bare bones example of TensorFlow, a machine learning package published by Google. You will not find a simpler introduction to it. In each example, a straight line is fit to some data. Values for the slope and y-intercept of the line that best fit the data are determined using gradient descent. If you do not know about gradient descent, check out the Wikipedia page.
tensorflow tensorflow-tutorials distributed-computing simple big-data linear-regression tensorflow-examples tensorflow-exercisesThe objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.
lstm tensorflow recurrent-networks deep-learning sequence-prediction tensorflow-lstm-regression jupyter time-series recurrent-neural-networksNLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. I will attached github repositories for models that I not implemented from scratch, basically I copy, paste and fix those code for deprecated issues.
nlp machine-learning embedded deep-learning chatbot language-detection lstm summarization attention speech-to-text neural-machine-translation optical-character-recognition pos-tagging lstm-seq2seq-tf dnc-seq2seq luong-apiTensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
machine-learning random-forest tensorflow keras ml decision-trees gradient-boosting interpretability decision-forestThis repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.
machine-learning logistic-regression ipynb machine-learning-algorithms linear-regression perceptron python-implementations kmeans algorithm python3 neural-network k-nearest-neighbours k-nearest-neighbor k-nn neural-networksThis code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.
Android TensorFlow Lite Machine Learning Example
tensorflow tensorflow-tutorials machine-learning tensorflow-lite tensorflow-examples deep-learning deep-neural-networks android-example machine-learning-algorithms tflite
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.