NeuronBlocks - NLP DNN Toolkit - Building Your NLP DNN Models Like Playing Lego

  •        14

NeuronBlocks is a NLP deep learning modeling toolkit that helps engineers/researchers to build end-to-end pipelines for neural network model training for NLP tasks. The main goal of this toolkit is to minimize developing cost for NLP deep neural network model building, including both training and inference stages. NeuronBlocks consists of two major components: Block Zoo and Model Zoo.

https://github.com/microsoft/NeuronBlocks

Tags
Implementation
License
Platform

   




Related Projects

Sequence-Semantic-Embedding - Tools and recipes to train deep learning models and build services for NLP tasks such as text classification, semantic search ranking and recall fetching, cross-lingual information retrieval, and question answering etc

  •    Python

SSE(Sequence Semantic Embedding) is an encoder framework toolkit for natural language processing related tasks. It's implemented in TensorFlow by leveraging TF's convenient deep learning blocks like DNN/CNN/LSTM etc. Depending on each specific task, similar semantic meanings can have different definitions. For example, in the category classification task, similar semantic meanings means that for each correct pair of (listing-title, category), the SSE of listing-title is close to the SSE of corresponding category. While in the information retrieval task, similar semantic meaning means for each relevant pair of (query, document), the SSE of query is close to the SSE of relevant document. While in the question answering task, the SSE of question is close to the SSE of correct answers.

decaNLP - The Natural Language Decathlon: A Multitask Challenge for NLP

  •    Python

The Natural Language Decathlon is a multitask challenge that spans ten tasks: question answering (SQuAD), machine translation (IWSLT), summarization (CNN/DM), natural language inference (MNLI), sentiment analysis (SST), semantic role labeling(QA‑SRL), zero-shot relation extraction (QA‑ZRE), goal-oriented dialogue (WOZ, semantic parsing (WikiSQL), and commonsense reasoning (MWSC). Each task is cast as question answering, which makes it possible to use our new Multitask Question Answering Network (MQAN). This model jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. For a more thorough introduction to decaNLP and the tasks, see the main website, our blog post, or the paper. While the research direction associated with this repository focused on multitask learning, the framework itself is designed in a way that should make single-task training, transfer learning, and zero-shot evaluation simple. Similarly, the paper focused on multitask learning as a form of question answering, but this framework can be easily adapted for different approached to single-task or multitask learning.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.


nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

neural-vqa - :grey_question: Visual Question Answering in Torch

  •    Lua

This is an experimental Torch implementation of the VIS + LSTM visual question answering model from the paper Exploring Models and Data for Image Question Answering by Mengye Ren, Ryan Kiros & Richard Zemel. Download the MSCOCO train+val images and VQA data using sh data/download_data.sh. Extract all the downloaded zip files inside the data folder.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

MMLSpark - Microsoft Machine Learning for Apache Spark

  •    Scala

MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

text-analytics-with-python - Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, "Text Analytics with Python" published by Apress/Springer

  •    Python

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.

AIDL-Series - :books: Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc

  •    

:books: Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc. 💫 人工智能与深度学习实战,机器学习篇 | Tensoflow 篇

DrQA - A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

  •    Python

A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produce an answer when given a question and one or more pieces of evidence (usually natural language paragraphs). Compared to question answering over knowledge bases, reading comprehension models are more flexible and have revealed a great potential for zero-shot learning.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

CNTK - Computational Network Toolkit (CNTK)

  •    C++

The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

torchMoji - 😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

  •    Python

It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such that we can make improvements and design better models in the future. Read our blog post about the implementation process here.

3dmatch-toolbox - 3DMatch - a 3D ConvNet-based local geometric descriptor for aligning 3D meshes and point clouds

  •    C++

Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose an unsupervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. This code is released under the Simplified BSD License (refer to the LICENSE file for details).