- 12

The JuliaFEM project develops open-source software for reliable, scalable, distributed Finite Element Method. The JuliaFEM software library is a framework that allows for the distributed processing of large Finite Element Models across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. The basic design principle is: everything is nonlinear. All physics models are nonlinear from which the linearization are made as a special cases.

http://juliafem.github.io/JuliaFEM.jl/latest/https://github.com/JuliaFEM/JuliaFEM.jl

Tags | fem finite element method julia julia-language |

Implementation | Julia |

License | MIT |

Platform |

Julia.jl aggregates and curates decibans of knowledge resources for programming in Julia, an all-purpose programming language that addresses the needs of high-performance numerical analysis and computational science. For Base packages, check if the package you seek is listed in the built-in package manager on github, or check METADATA for registered Julia packages, then use the built-in package manager to install it after checking the requirements for respective versions. Pkg3.jl is an alpha next-generation package manager for Julia that creates a Manifest.toml file that records the exact versions of each dependency and their transitive dependencies.

julia julialang awesome-listFinite Element Method Samples with C#

civil-engineering fem finite-elementThe Julia base package is pretty big, although at the same time, there are lots of other packages around to expand it with. The result is that on the whole, it is impossible to give a thorough overview of all that Julia can do in just a few brief exercises. Therefore, I had to adopt a little 'bias', or 'slant' if you please, in deciding what to focus on and what to ignore. Julia is a technical computing language, although it does have the capabilities of any general purpose language and you'd be hard-pressed to find tasks it's completely unsuitable for (although that does not mean it's the best or easiest choice for any of them). Julia was developed with the occasional reference to R, and with an avowed intent to improve upon R's clunkiness. R is a great language, but relatively slow, to the point that most people use it to rapid prototype, then implement the algorithm for production in Python or Java. Julia seeks to be as approachable as R but without the speed penalty.

julia learning-julia language learning learning-by-doing julia-language julialang data-science statistics technical-computing hpc scientific-computingJulia is a high-level, high-performance dynamic language for technical computing. The main homepage for Julia can be found at julialang.org. This is the GitHub repository of Julia source code, including instructions for compiling and installing Julia, below. New developers may find the notes in CONTRIBUTING helpful to start contributing to the Julia codebase.

julia julia-language programming-language scientific-computing high-performance-computing numerical-computation machine-learningThis package provides the ability to directly call and fully interoperate with Python from the Julia language. You can import arbitrary Python modules from Julia, call Python functions (with automatic conversion of types between Julia and Python), define Python classes from Julia methods, and share large data structures between Julia and Python without copying them. Within Julia, just use the package manager to run Pkg.add("PyCall") to install the files. Julia 0.5 or later is required.

Several MIT courses involving numerical computation, including 18.06, 18.303, 18.330, 18.335/6.337, 18.337/6.338, and 18.338, are beginning to use Julia, a fairly new language for technical computing. This page is intended to supplement the Julia documentation with some simple tutorials on installing and using Julia targeted at MIT students. See also our Julia cheatsheet listing a few basic commands, as well as the Learn Julia in Y minutes tutorial page. In particular, we will be using Julia in the IJulia browser-based enviroment, which leverages your web browser and IPython to provide a rich environment combining code, graphics, formatted text, and even equations, with sophisticated plots via Matplotlib.

Official git repository of Elmer FEM software

finite-element-methods finite-elements fem multiphysics fluid-mechanics structural-mechanics electromagnetics mpi parallel-computing acoustics elmergui elmersolver elmergridObject oriented finite element library built in Delphi for structural and thermal analysis in civil engineering.

3d civil-engineering delphi fem finite-element math mtxvecIJulia is a Julia-language backend combined with the Jupyter interactive environment (also used by IPython). This combination allows you to interact with the Julia language using Jupyter/IPython's powerful graphical notebook, which combines code, formatted text, math, and multimedia in a single document. to install IJulia.

This is the GitHub repository for the Julia programming language project's main website, julialang.org. The repository for the source code of the language itself can be found at github.com/JuliaLang/julia. The Julia website is generated using GitHub pages and Jekyll, as explained here.

This is the GitHub repository for the Julia programming language project's main website, julialang.org. The repository for the source code of the language itself can be found at github.com/JuliaLang/julia. The Julia website is generated using GitHub pages and Jekyll, as explained here.

Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments. It provides a sophisticated compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function library. This computation is automatically distributed across all available compute nodes, and the result, reduced by summation (+), is returned at the calling node.

language programming-language statistical-language statistics technical-computingPowerful convenience for Julia visualizations and data analysis

julia plotting visualization julia-languageJuMP is a domain-specific modeling language for mathematical optimization embedded in Julia. It currently supports a number of open-source and commercial solvers (Artelys Knitro, BARON, Bonmin, Cbc, Clp, Couenne, CPLEX, ECOS, FICO Xpress, GLPK, Gurobi, Ipopt, MOSEK, NLopt, SCS) for a variety of problem classes, including linear programming, (mixed) integer programming, second-order conic programming, semidefinite programming, and nonlinear programming. JuMP makes it easy to specify and solve optimization problems without expert knowledge, yet at the same time allows experts to implement advanced algorithmic techniques such as exploiting efficient hot-starts in linear programming or using callbacks to interact with branch-and-bound solvers. JuMP is also fast - benchmarking has shown that it can create problems at similar speeds to special-purpose commercial tools such as AMPL while maintaining the expressiveness of a generic high-level programming language. JuMP can be easily embedded in complex work flows including simulations and web servers.

optimization julia modeling-languageFeapUI gives a graphical easy-to-use interface to the fem (finite element method) programm FEAP by R.L. Taylor (www.ce.berkeley.edu/~rlt/). FeapUI runs on Linux/Unix and Windows with java. This gives you more quot;Feapingquot; and lesser maual reading.

Application for soft tissue modeling which provides on-line or off-line computation based on user's defined FEM (finite element method).

News: Turing.jl is now Julia 1.0 compatible now! Be aware that some things still might fail. Turing was originally created and is now managed by Hong Ge. Current and past Turing team members include Hong Ge, Adam Scibior, Matej Balog, Zoubin Ghahramani, Kai Xu, Emma Smith, Emile Mathieu, Martin Trapp. You can see the full list of on Github: https://github.com/TuringLang/Turing.jl/graphs/contributors.

machine-learning probabilistic-programming mcmc-sampler julia-language artificial-intelligence bayesian-inferenceKnet uses dynamic computational graphs generated at runtime for automatic differentiation of (almost) any Julia code. This allows machine learning models to be implemented by defining just the forward calculation (i.e. the computation from parameters and data to loss) using the full power and expressivity of Julia. The implementation can use helper functions, loops, conditionals, recursion, closures, tuples and dictionaries, array indexing, concatenation and other high level language features, some of which are often missing in the restricted modeling languages of static computational graph systems like Theano, Torch, Caffe and Tensorflow. GPU operation is supported by simply using the KnetArray type instead of regular Array for parameters and data. Knet builds a dynamic computational graph by recording primitive operations during forward calculation. Only pointers to inputs and outputs are recorded for efficiency. Therefore array overwriting is not supported during forward and backward passes. This encourages a clean functional programming style. High performance is achieved using custom memory management and efficient GPU kernels. See Under the hood for more details.

The Finite Element ToolKit (FETK) is an evolving collection of adaptive multilevel finite element method (AFEM) software libraries and tools for solving coupled systems of nonlinear geometric partial differential equations (PDE).

We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**