awesome-machine-learning-interpretability - A curated list of awesome machine learning interpretability resources

  •        38

A curated, but probably biased and incomplete, list of awesome machine learning interpretability resources. If you want to contribute to this list (and please do!) read over the contribution guidelines, send a pull request, or contact me @jpatrickhall.

https://github.com/jphall663/awesome-machine-learning-interpretability

Tags
Implementation
License
Platform

   




Related Projects

mindsdb - Machine Learning in one line of code

  •    Python

MindsDB's is an Explainable AutoML framework for developers. MindsDB is an automated machine learning platform that allows anyone to gain powerful insights from their data. With MindsDB, users can get fast, accurate, and interpretable answers to any of their data questions within minutes.

xai - XAI - An eXplainability toolbox for machine learning

  •    Python

XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contains various tools that enable for analysis and evaluation of data and models. The XAI library is maintained by The Institute for Ethical AI & ML, and it was developed based on the 8 principles for Responsible Machine Learning. You can find the documentation at https://ethicalml.github.io/xai/index.html. You can also check out our talk at Tensorflow London where the idea was first conceived - the talk also contains an insight on the definitions and principles in this library.

AIX360 - Interpretability and explainability of data and machine learning models

  •    Python

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

interpretable-ml-book - Book about interpretable machine learning

  •    TeX

Explaining the decisions and behaviour of machine learning models. This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human. This books is recommended for machine learning practitioners, data scientists, statisticians and also for stakeholders deciding on the use of machine learning and intelligent algorithms.


shapash - 🔅 Shapash makes Machine Learning models transparent and understandable by everyone

  •    Jupyter

Shapash is a Python library which aims to make machine learning interpretable and understandable by everyone. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can understand their models easily and share their results. End users can understand the decision proposed by a model using a summary of the most influential criteria.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

interpret - Fit interpretable models. Explain blackbox machine learning.

  •    C++

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

DALEX - Descriptive mAchine Learning EXplanations

  •    R

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.

machine-learning-with-ruby - Curated list: Resources for machine learning in Ruby.

  •    Ruby

Machine Learning is a field of Computational Science - often nested under AI research - with many practical applications due to the ability of resulting algorithms to systematically implement a specific solution without explicit programmer's instructions. Obviously many algorithms need a definition of features to look at or a biggish training set of data to derive the solution from. This curated list comprises awesome libraries, data sources, tutorials and presentations about Machine Learning utilizing the Ruby programming language.

business-machine-learning - A curated list of practical business machine learning (BML) and business data science (BDS) applications for Accounting, Customer, Employee, Legal, Management and Operations (by @firmai)

  •    Jupyter

Animated Investment Management Research at Sov.ai — Sponsoring open source AI, Machine learning, and Data Science initiatives. A curated list of applied business machine learning (BML) and business data science (BDS) examples and libraries. The code in this repository is in Python (primarily using jupyter notebooks) unless otherwise stated. The catalogue is inspired by awesome-machine-learning.

ml-workspace - 🛠 All-in-one web-based IDE specialized for machine learning and data science.

  •    Jupyter

The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (📖 Installation Guide).

awesome-interpretable-machine-learning

  •    Python

Opinionated list of resources facilitating model interpretability (introspection, simplification, visualization, explanation). Software related to papers is mentioned along with each publication. Here only standalone software is included.

awesome-ml-for-cybersecurity - :octocat: Machine Learning for Cyber Security

  •    

A curated list of amazingly awesome tools and resources related to the use of machine learning for cyber security. Please read CONTRIBUTING if you wish to add tools or resources.

Awesome-CoreML-Models - Largest list of models for Core ML (for iOS 11+)

  •    HTML

We've put up the largest collection of machine learning models in Core ML format, to help iOS, macOS, tvOS, and watchOS developers experiment with machine learning techniques. We've created a site with better visualization of the models CoreML.Store, and are working on more advance features. If you've converted a Core ML model, feel free to submit an issue.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

aerosolve - A machine learning package built for humans.

  •    Scala

Machine learning for humans.This library is meant to be used with sparse, interpretable features such as those that commonly occur in search (search keywords, filters) or pricing (number of rooms, location, price). It is not as interpretable with problems with very dense non-human interpretable features such as raw pixels or audio samples.

Machine-Learning-Tutorials - machine learning and deep learning tutorials, articles and other resources

  •    

This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this list. If you want to contribute to this list, please read Contributing Guidelines.

ML-From-Scratch - Machine Learning From Scratch

  •    Python

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent and accessible way.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.