jlearn - Machine Learning Library, written in J

  •        6

WIP Machine learning library, written in J. Various algorithm implementations, including MLPClassifiers, MLPRegressors, Mixture Models, K-Means, KNN, RBF-Network, Self-organizing Maps. Models can be serialized to text files, with a mixture of text and binary packing. The size of the serialized file depends on the size of the model, but will probably range from 10 MB and upwards for NN models (including convnets and rec-nets).




Related Projects

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

Deep-Learning-with-Keras - Code repository for Deep Learning with Keras published by Packt

  •    Jupyter

This is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

dll - Deep Learning Library (DLL) for C++ (ANNs, CNNs, RBMs, DBNs...)

  •    C++

DLL is a library that aims to provide a C++ implementation of Restricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) and their convolution versions as well. It also has support for some more standard neural networks. Note: When you clone the library, you need to clone the sub modules as well, using the --recursive option.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

synaptic - architecture-free neural network library for node.js and the browser

  •    Javascript

Synaptic is a javascript neural network library for node.js and the browser, its generalized algorithm is architecture-free, so you can build and train basically any type of first order or even second order neural network architectures. This library includes a few built-in architectures like multilayer perceptrons, multilayer long-short term memory networks (LSTM), liquid state machines or Hopfield networks, and a trainer capable of training any given network, which includes built-in training tasks/tests like solving an XOR, completing a Distracted Sequence Recall task or an Embedded Reber Grammar test, so you can easily test and compare the performance of different architectures.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

detection-2016-nipsws - Hierarchical Object Detection with Deep Reinforcement Learning

  •    Python

We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal.

Apache Mahout - Scalable machine learning library

  •    Java

Apache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

tflearn - Deep learning library featuring a higher-level API for TensorFlow.

  •    Python

TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

Kur - Descriptive Deep Learning

  •    Python

Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

ConvNetJS - Javascript implementation of Neural networks

  •    Javascript

ConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

machine_learning_basics - Plain python implementations of basic machine learning algorithms

  •    Jupyter

This repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.