recurrent-entity-networks - TensorFlow implementation of "Tracking the World State with Recurrent Entity Networks"

  •        35

This repository contains an independent TensorFlow implementation of recurrent entity networks from Tracking the World State with Recurrent Entity Networks. This paper introduces the first method to solve all of the bAbI tasks using 10k training examples. The author's original Torch implementation is now available here. Percent error for each task, comparing those in the paper to the implementation contained in this repository.



Related Projects

lectures - Oxford Deep NLP 2017 course


This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

zhihu - This repo contains the source code in my personal column (https://zhuanlan

  •    Jupyter

This repo contains the source code in my personal column (, implemented using Python 3.6. Including Natural Language Processing and Computer Vision projects, such as text generation, machine translation, deep convolution GAN and other actual combat code.

tensorflow-lstm-regression - Sequence prediction using recurrent neural networks(LSTM) with TensorFlow

  •    Jupyter

The objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

keras - Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.

  •    Python

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

easy-tensorflow - Simple and comprehensive tutorials in TensorFlow

  •    Python

The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

RNNSharp - RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on

  •    CSharp

RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on. It's written by C# language and based on .NET framework 4.6 or above version. This page introduces what is RNNSharp, how it works and how to use it. To get the demo package, you can access release page.

CNTK - Computational Network Toolkit (CNTK)

  •    C++

The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

tensorlayer-tricks - How to use TensorLayer


While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.

  •    Python

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

awesome-deep-learning-papers - The most cited deep learning papers

  •    TeX

We believe that there exist classic deep learning papers which are worth reading regardless of their application domain. Rather than providing overwhelming amount of papers, We would like to provide a curated list of the awesome deep learning papers which are considered as must-reads in certain research domains. Before this list, there exist other awesome deep learning lists, for example, Deep Vision and Awesome Recurrent Neural Networks. Also, after this list comes out, another awesome list for deep learning beginners, called Deep Learning Papers Reading Roadmap, has been created and loved by many deep learning researchers.

grenade - Deep Learning in Haskell

  •    Haskell

Grenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. And that's it. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself.

rwa - Machine Learning on Sequential Data Using a Recurrent Weighted Average

  •    Python

This repository holds the code to a new kind of RNN model for processing sequential data. The model computes a recurrent weighted average (RWA) over every previous processing step. With this approach, the model can form direct connections anywhere along a sequence. This stands in contrast to traditional RNN architectures that only use the previous processing step. A detailed description of the RWA model has been published in a manuscript at Because the RWA can be computed as a running average, it does not need to be completely recomputed with each processing step. The numerator and denominator can be saved from the previous step. Consequently, the model scales like that of other RNN models such as the LSTM model.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.