- 100

This library provides high-performance components leveraging the hardware acceleration support and automatic differentiation of TensorFlow. The library will provide TensorFlow support for foundational mathematical methods, mid-level methods, and specific pricing models. The coverage is being rapidly expanded over the next few months. Foundational methods. Core mathematical methods - optimisation, interpolation, root finders, linear algebra, random and quasi-random number generation, etc.

https://github.com/google/tf-quant-financeTags | tensorflow quantitative-finance finance numerical-methods numerical-optimization numerical-integration high-performance high-performance-computing gpu gpu-computing quantlib |

Implementation | Jupyter Notebook |

License | Apache |

Platform |

Dodoni.net is a free/open-source library with the aim to provide a framework for quantitative finance and for numerical computing.

blas excel finance intel-mkl-wrapper lapack numerical-algorithmsGunrock is a CUDA library for graph-processing designed specifically for the GPU. It uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. For more details, please visit our website, read Why Gunrock, our TOPC 2017 paper Gunrock: GPU Graph Analytics, look at our results, and find more details in our publications. See Release Notes to keep up with the our latest changes.

gunrock cuda graph-processing graph-analytics gpu graph-primitivesJulia is a high-level, high-performance dynamic language for technical computing. The main homepage for Julia can be found at julialang.org. This is the GitHub repository of Julia source code, including instructions for compiling and installing Julia, below. New developers may find the notes in CONTRIBUTING helpful to start contributing to the Julia codebase.

julia julia-language programming-language scientific-computing high-performance-computing numerical-computation machine-learningGosl is a Go library to develop Artificial Intelligence and High-Performance Scientific Computations. The library tries to be as general and easy as possible. Gosl considers the use of both Go concurrency routines and parallel computing using the message passing interface (MPI). Gosl has several modules (sub-packages) for a variety of tasks in scientific computing, image analysis, and data post-processing.

scientific-computing visualization linear-algebra differential-equations sparse-systems plotting mkl parallel-computations computational-geometry graph-theory tensor-algebra fast-fourier-transform eigenvalues eigenvectors hacktoberfest machine-learning artificial-intelligence optimization optimization-algorithms linear-programmingOwl is an emerging numerical library for scientific computing and engineering. The library is developed in the OCaml language and inherits all its powerful features such as static type checking, powerful module system, and superior runtime efficiency. Owl allows you to write succinct type-safe numerical applications in functional language without sacrificing performance, significantly reduces the cost from prototype to production use. Owl's documentation contains a lot of learning materials to help you start. The full documentation consists of two parts: Tutorial Book and API Reference. Both are perfectly synchronised with the code in the repository by the automatic building system. You can access both parts with the following link.

matrix linear-algebra ndarray statistical-functions topic-modeling regression maths gsl plotting sparse-linear-systems scientific-computing numerical-calculations statistics mcmc optimization autograd algorithmic-differentation automatic-differentiation machine-learning neural-networkA Clojure Library for Bayesian Data Analysis and Machine Learning on the GPU. Distributed under the Eclipse Public License either version 1.0 or (at your option) any later version.

bayesian-inference bayesian-data-analysis gpu-computing gpu-acceleration statistics machine-learning clojure-library bayesian opencl cuda high-performance-computing gpu mcmc markov-chain-monte-carloJQuantLib is a comprehensive framework for quantitative finance, written in 100% Java. It provides "quants" and Java application developers several mathematical and statistical tools needed for the valuation of shares, options, futures, swaps, and other financial instruments. JQuantLib is based on QuantLib, a well known open-source library for quantitative finance, written in C++. JQuantLib aims to be a complete rewrite of QuantLib, offering features Java developers expect to find. It aims to be fast, correct, strongly typed, well-documented, and user-friendly.

technical-analysis trading quantitative-finance shares optionsJulia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments. It provides a sophisticated compiler, distributed parallel execution, numerical accuracy, and an extensive mathematical function library. This computation is automatically distributed across all available compute nodes, and the result, reduced by summation (+), is returned at the calling node.

language programming-language statistical-language statistics technical-computingPIConGPU is a fully relativistic, manycore, 3D3V particle-in-cell (PIC) code. The Particle-in-Cell algorithm is a central tool in plasma physics. It describes the dynamics of a plasma by computing the motion of electrons and ions in the plasma based on Maxwell's equations. As one of our supported compute platforms, GPUs provide a computational performance of several TFLOP/s at considerable lower invest and maintenance costs compared to multi CPU-based compute architectures of similar performance. The latest high-performance systems (TOP500) are enhanced by accelerator hardware that boost their peak performance up to the multi-PFLOP/s level. With its outstanding performance and scalability to more than 18'000 GPUs, PIConGPU was one of the finalists of the 2013 Gordon Bell Prize.

laser plasma physics gpu physics-simulation gpu-computing particle-accelerator particle-in-cell pic researchA Processing/Java library for high performance GPU-Computing (GLSL).

glsl fluid-simulation cloth-simulation skylight processing-ide softbody-dynamics postprocessing opengl filters antialiasingOpenSubdiv is a set of open source libraries that implement high performance subdivision surface (subdiv) evaluation on massively parallel CPU and GPU architectures. This codepath is optimized for drawing deforming subdivs with static topology at interactive framerates. The resulting limit surface matches Pixar's Renderman to numerical precision. OpenSubdiv is covered by the Apache license, and is free to use for commercial or non-commercial use. This is the same code that Pixar uses internally for animated film production. Our intent is to encourage high performance accurate subdiv drawing by giving away the "good stuff".

SciPy (pronounced "Sigh Pie") is open-source software for mathematics, science, and engineering. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization.

scientific scientific-computing mathematicsThe QuantLib project (http://quantlib.org) is aimed at providing a comprehensive software framework for quantitative finance. QuantLib is a free/open-source library for modeling, trading, and risk management in real-life. QuantLib is Non-Copylefted Free Software and OSI Certified Open Source Software.

quantitative-financeStdlib is a standard library for JavaScript and Node.js, with an emphasis on numeric computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

stdlib scientific-computing numerical-computing statistics mathsData.Array.Accelerate defines an embedded language of array computations for high-performance computing in Haskell. Computations on multi-dimensional, regular arrays are expressed in the form of parameterised collective operations (such as maps, reductions, and permutations). These computations are online-compiled and executed on a range of architectures. Chapter 6 of Simon Marlow's book Parallel and Concurrent Programming in Haskell contains a tutorial introduction to Accelerate.

haskell accelerate llvm cuda parallel-computing gpu-computingArraymancer is a tensor (N-dimensional array) project in Nim. The main focus is providing a fast and ergonomic CPU, Cuda and OpenCL ndarray library on which to build a scientific computing and in particular a deep learning ecosystem. The library is inspired by Numpy and PyTorch. The library provides ergonomics very similar to Numpy, Julia and Matlab but is fully parallel and significantly faster than those libraries. It is also faster than C-based Torch.

tensor nim multidimensional-arrays cuda deep-learning machine-learning cudnn high-performance-computing gpu-computing matrix-library neural-networks parallel-computing openmp linear-algebra ndarray opencl gpgpu iot automatic-differentiation autogradNeanderthal is a Clojure library for fast matrix and linear algebra computations based on the highly optimized native libraries of BLAS and LAPACK computation routines for both CPU and GPU.. Read the documentation at Neanderthal Web Site.

clojure-library matrix gpu gpu-computing gpgpu opencl cuda high-performance-computing vectorization api matrix-factorization matrix-multiplication matrix-functions matrix-calculationsThe well-optimized DifferentialEquations solvers benchmark as the some of the fastest implementations, using classic algorithms and ones from recent research which routinely outperform the "standard" C/Fortran methods, and include algorithms optimized for high-precision and HPC applications. At the same time, it wraps the classic C/Fortran methods, making it easy to switch over to them whenever necessary. It integrates with the Julia package sphere, for example using Juno's progress meter, automatic plotting, built-in interpolations, and wraps other differential equation solvers so that many different methods for solving the equations can be accessed by simply switching a keyword argument. It utilizes Julia's generality to be able to solve problems specified with arbitrary number types (types with units like Unitful, and arbitrary precision numbers like BigFloats and ArbFloats), arbitrary sized arrays (ODEs on matrices), and more. This gives a powerful mixture of speed and productivity features to help you solve and analyze your differential equations faster. For information on using the package, see the stable documentation. Use the latest documentation for the version of the documentation which contains the un-released features.

differential-equations differentialequations julia ode sde pde dae stochastic dde spde delay monte-carlo-simulation stochastic-processes stochastic-differential-equations delay-differential-equations partial-differential-equations differential-algebraic-equations simulation numerical-integration dynamical-systemsThe ROCm Platform brings a rich foundation to advanced computing by seamlessly integrating the CPU and GPU with the goal of solving real-world problems. This software enables the high-performance operation of AMD GPUs for computationally oriented tasks in the Linux operating system. ROCm is focused on using AMD GPUs to accelerate computational tasks such as machine learning, engineering workloads, and scientific computing. In order to focus our development efforts on these domains of interest, ROCm supports a targeted set of hardware configurations which are detailed further in this section.

scikit-cuda provides Python interfaces to many of the functions in the CUDA device/runtime, CUBLAS, CUFFT, and CUSOLVER libraries distributed as part of NVIDIA's CUDA Programming Toolkit, as well as interfaces to select functions in the CULA Dense Toolkit. Both low-level wrapper functions similar to their C counterparts and high-level functions comparable to those in NumPy and Scipy are provided. Package documentation is available at http://scikit-cuda.readthedocs.org/. Many of the high-level functions have examples in their docstrings. More illustrations of how to use both the wrappers and high-level functions can be found in the demos/ and tests/ subdirectories.

gpu cuda blas lapack numerical
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**