frustum-pointnets - Frustum PointNets for 3D Object Detection from RGB-D Data

  •        60

Created by Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su and Leonidas J. Guibas from Stanford University and Nuro Inc. This repository is code release for our CVPR 2018 paper (arXiv report here). In this work, we study 3D object detection from RGB-D data. We propose a novel detection pipeline that combines both mature 2D object detectors and the state-of-the-art 3D deep learning techniques. In our pipeline, we firstly build object proposals with a 2D detector running on RGB images, where each 2D bounding box defines a 3D frustum region. Then based on 3D point clouds in those frustum regions, we achieve 3D instance segmentation and amodal 3D bounding box estimation, using PointNet/PointNet++ networks (see references at bottom).

https://github.com/charlesq34/frustum-pointnets

Tags
Implementation
License
Platform

   




Related Projects

3dmatch-toolbox - 3DMatch - a 3D ConvNet-based local geometric descriptor for aligning 3D meshes and point clouds

  •    C++

Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose an unsupervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. This code is released under the Simplified BSD License (refer to the LICENSE file for details).

detection-2016-nipsws - Hierarchical Object Detection with Deep Reinforcement Learning

  •    Python

We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal.

raster-vision - deep learning for aerial/satellite imagery

  •    Python

Note: this project is under development and may be difficult to use at the moment. The overall goal of Raster Vision is to make it easy to train and run deep learning models over aerial and satellite imagery. At the moment, it includes functionality for making training data, training models, making predictions, and evaluating models for the task of object detection implemented via the Tensorflow Object Detection API. It also supports running experimental workflows using AWS Batch. The library is designed to be easy to extend to new data sources, machine learning tasks, and machine learning implementation.

pyntcloud - pyntcloud is a Python library for working with 3D point clouds.

  •    Python

pyntcloud is a Python 3 library for working with 3D point clouds leveraging the power of the Python scientific stack. You can access most of pyntcloud's functionality from its core class: PyntCloud.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.


ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

pointnet2 - PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

  •    Python

Created by Charles R. Qi, Li (Eric) Yi, Hao Su, Leonidas J. Guibas from Stanford University. This work is based on our NIPS'17 paper. You can find arXiv version of the paper here or check project webpage for a quick overview. PointNet++ is a follow-up project that builds on and extends PointNet. It is version 2.0 of the PointNet architecture.

pointnet - PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

  •    Python

Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Stanford University. This work is based on our arXiv tech report, which is going to appear in CVPR 2017. We proposed a novel deep net architecture for point clouds (as unordered point sets). You can also check our project webpage for a deeper introduction.

T-CNN - ImageNet 2015 Object Detection from Video (VID)

  •    Python

The TCNN framework is a deep learning framework for object detection in videos. This framework was orginally designed for the ImageNet VID chellenge in ILSVRC2015. If you are using the T-CNN code in you project, please cite the following works.

Detectron - FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet

  •    Python

Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including Mask R-CNN. It is written in Python and powered by the Caffe2 deep learning framework. At FAIR, Detectron has enabled numerous research projects, including: Feature Pyramid Networks for Object Detection, Mask R-CNN, Detecting and Recognizing Human-Object Interactions, Focal Loss for Dense Object Detection, Non-local Neural Networks, Learning to Segment Every Thing, and Data Distillation: Towards Omni-Supervised Learning.

luminoth - Deep Learning toolkit for Computer Vision

  •    Python

Luminoth is an open source toolkit for computer vision. Currently, we support object detection, but we are aiming for much more. It is built in Python, using TensorFlow and Sonnet. Read the full documentation here.

jetson-reinforcement - Deep reinforcement learning GPU libraries for NVIDIA Jetson with PyTorch, OpenAI Gym, and Gazebo robotics simulator

  •    C++

In this tutorial, we'll be creating artificially intelligent agents that learn from interacting with their environment, gathering experience, and a system of rewards with deep reinforcement learning (deep RL). Using end-to-end neural networks that translate raw pixels into actions, RL-trained agents are capable of exhibiting intuitive behaviors and performing complex tasks. Ultimately, our aim will be to train reinforcement learning agents from virtual robotic simulation in 3D and transfer the agent to a real-world robot. Reinforcement learners choose the best action for the agent to perform based on environmental state (like camera inputs) and rewards that provide feedback to the agent about it's performance. Reinforcement learning can learn to behave optimally in it's environment given a policy, or task - like obtaining the reward.

pytorch_geometric - Geometric Deep Learning Extension Library for PyTorch

  •    Python

PyTorch Geometric is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

Deep-Learning-with-Keras - Code repository for Deep Learning with Keras published by Packt

  •    Jupyter

This is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

darkflow - Translate darknet to tensorflow

  •    Python

Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

awesome-visual-slam - :books: The list of vision-based SLAM / Visual Odometry open source, blogs, and papers

  •    

[1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE > Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF. [2] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE > Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012. PDF. D. Nister, “An efficient solution to the five-point relative pose problem,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 756–770, 2004.