facegan - TF implementation of our ECCV 2018 paper: Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

  •        12

This repository provides a Tensorflow implementation of our study where we propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model.




Related Projects

eos - A lightweight 3D Morphable Face Model fitting library in modern C++11/14

  •    C++

eos is a lightweight 3D Morphable Face Model fitting library that provides basic functionality to use face models, as well as camera and shape fitting functionality. It's written in modern C++11/14. An experimental model viewer to visualise 3D Morphable Models and blendshapes is available here.

T2F - T2F: text to face generation using Deep Learning

  •    Python

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

faceswap-GAN - A denoising autoencoder + adversarial losses and attention mechanisms for face swapping

  •    Jupyter

Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Here is a playground notebook for faceswap-GAN v2.2 on Google Colab. Users can train their own model in the browser without GPU required.

node-facenet - Solve face verification, recognition and clustering problems: A TensorFlow backed FaceNet implementation for Node

  •    TypeScript

A TensorFlow backed FaceNet implementation for Node.js, which can solve face verification, recognition and clustering problems. FaceNet is a deep convolutional network designed by Google, trained to solve face verification, recognition and clustering problem with efficiently at scale.

4dface - Real-time 3D face tracking and reconstruction from 2D video

  •    C++

This is a demo app showing face tracking and 3D Morphable Model fitting on live webcams and videos. It builds upon the 3D face model library eos and the landmark detection and optimisation library superviseddescent. Clone with submodules: git clone --recursive git://github.com/patrikhuber/4dface.git, or, if you've already cloned it, get the submodules with git submodule update --init --recursive inside the 4dface directory.

facenet - Face recognition using Tensorflow

  •    Python

This is a TensorFlow implementation of the face recognizer described in the paper "FaceNet: A Unified Embedding for Face Recognition and Clustering". The project also uses ideas from the paper "Deep Face Recognition" from the Visual Geometry Group at Oxford. The code is tested using Tensorflow r1.7 under Ubuntu 14.04 with Python 2.7 and Python 3.5. The test cases can be found here and the results can be found here.

cppn-gan-vae-tensorflow - Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images

  •    Python

Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images. Run python train.py from the command line to train from scratch and experiment with different settings.

generative-compression - TensorFlow Implementation of Generative Adversarial Networks for Extreme Learned Image Compression

  •    Python

TensorFlow Implementation for learned compression of images using Generative Adversarial Networks. The method was developed by Agustsson et. al. in Generative Adversarial Networks for Extreme Learned Image Compression. The proposed idea is very interesting and their approach is well-described. Training is conducted with batch size 1 and reconstructed samples / tensorboard summaries will be periodically written every certain number of steps (default is 128). Checkpoints are saved every 10 epochs.

pix2pixHD - Synthesizing and manipulating 2048x1024 images with conditional GANs

  •    Python

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1 1NVIDIA Corporation, 2UC Berkeley In arxiv, 2017.

All-About-the-GAN - All About the GANs(Generative Adversarial Networks) - Summarized lists for GAN

  •    Python

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

text-to-image - Generative Adversarial Text to Image Synthesis / Please Star -->

  •    Python

This is an experimental tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow. N.B You can downloads all data files needed manually or simply run the downloads.py and put the correct files to the right directories.

DCGAN-tensorflow - A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

  •    Javascript

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

simulated-unsupervised-tensorflow - TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

  •    Python

TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial Training. Result of lambda=1.0 with optimizer=sgd after 8,000 steps.


  •    Javascript

Simple Node.js API for robust face detection and face recognition. This a Node.js wrapper library for the face detection and face recognition tools implemented in dlib. Installing the package will build dlib for you and download the models. Note, this might take some time.

face_recognition - The world's simplest facial recognition api for Python and the command line

  •    Python

Recognize and manipulate faces from Python or from the command line with the world's simplest face recognition library. Built using dlib's state-of-the-art face recognition built with deep learning. The model has an accuracy of 99.38% on the Labeled Faces in the Wild benchmark.

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.