pymetamap - Python wraper for MetaMap

  •        60

Python wrapper around MetaMap. This will take a list of sentences and extract concepts using MetaMap then return them in the form of a list of Concept objects. Note: This code does not work with Windows because of my use of NamedTemporaryFile in SubprocessBackend.py.

https://github.com/AnthonyMRios/pymetamap

Tags
Implementation
License
Platform

   




Related Projects

spark-nlp - Natural Language Understanding Library for Apache Spark.

  •    Jupyter

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

CoreNLP - Stanford CoreNLP: A Java suite of core NLP tools.

  •    Java

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. It provides the foundational building blocks for higher level text understanding applications.

treat - Natural language processing framework for Ruby.

  •    Ruby

Treat is a toolkit for natural language processing and computational linguistics in Ruby. The Treat project aims to build a language- and algorithm- agnostic NLP framework for Ruby with support for tasks such as document retrieval, text chunking, segmentation and tokenization, natural language parsing, part-of-speech tagging, keyword extraction and named entity recognition. Learn more by taking a quick tour or by reading the manual. I am actively seeking developers that can help maintain and expand this project. You can find a list of ideas for contributing to the project here.

snips-nlu - Snips Python library to extract meaning from text

  •    Python

Snips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.


stanford-core-nlp - Ruby bindings to the Stanford Core NLP tools (English, French, German).

  •    Ruby

Ruby bindings for the Stanford CoreNLP Toolchain. This gem provides high-level Ruby bindings to the Stanford CoreNLP package, a set natural language processing tools for tokenization, sentence segmentation, part-of-speech tagging, lemmatization, and parsing of English, French and German. The package also provides named entity recognition and coreference resolution for English.

prose - :book: A Golang library for text processing, including tokenization, part-of-speech tagging, and named-entity extraction

  •    Go

prose is Go library for text (primarily English at the moment) processing that supports tokenization, part-of-speech tagging, named-entity extraction, and more. The library's functionality is split into subpackages designed for modular use.See the GoDoc documentation for more information.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

flair - A very simple framework for state-of-the-art NLP

  •    Python

A very simple framework for state-of-the-art NLP. Developed by Zalando Research. A powerful syntactic-semantic tagger / classifier. Flair allows you to apply our state-of-the-art models for named entity recognition (NER), part-of-speech tagging (PoS), frame sense disambiguation, chunking and classification to your text.

nlp-architect - NLP Architect by Intel AI Lab: Python library for exploring the state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding

  •    Python

NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding. It is intended to be a platform for future research and collaboration. Framework documentation on NLP models, algorithms, and modules, and instructions on how to contribute can be found at our main documentation site.

cogcomp-nlp - CogComp's Natural Language Processing libraries and Demos:

  •    Java

This project collects a number of core libraries for Natural Language Processing (NLP) developed by Cognitive Computation Group. Each library contains detailed readme and instructions on how to use it. In addition the javadoc of the whole project is available here.

NLP-progress - Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks

  •    HTML

This document aims to track the progress in Natural Language Processing (NLP) and give an overview of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets. It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging as well as more recent ones such as reading comprehension and natural language inference. The main objective is to provide the reader with a quick overview of benchmark datasets and the state-of-the-art for their task of interest, which serves as a stepping stone for further research. To this end, if there is a place where results for a task are already published and regularly maintained, such as a public leaderboard, the reader will be pointed there.

BANNER Named Entity Recognition System

  •    Java

BANNER is a named entity recognition system intended primarily for biomedical text. It uses conditional random fields as the primary recognition engine and includes a wide survey of the best techniques described in recent literature.

nlp_tasks - Natural Language Processing Tasks and References

  •    

I've been working on several natural language processing tasks for a long time. One day, I felt like drawing a map of the NLP field where I earn a living. I'm sure I'm not the only person who wants to see at a glance which tasks are in NLP. Reviewed and updated by YJ Choe on Oct. 18, 2017.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.