Displaying 1 to 12 from 12 results

TernausNetV2 - TernausNetV2: Fully Convolutional Network for Instance Segmentation

  •    Jupyter

We present network definition and weights for our second place solution in CVPR 2018 DeepGlobe Building Extraction Challenge. Automatic building detection in urban areas is an important task that creates new opportunities for large scale urban planning and population monitoring. In a CVPR 2018 Deepglobe Building Extraction Challenge participants were asked to create algorithms that would be able to perform binary instance segmentation of the building footprints from satellite imagery. Our team finished second and in this work we share the description of our approach, network weights and code that is sufficient for inference.

gfw - Global Forest Watch: An online, global, near-real time forest monitoring tool

  •    HTML

Global Forest Watch (GFW) is a dynamic online forest monitoring and alert system that empowers people everywhere to better manage forests. This repository contains the GFW web app.

sentinel-util - A CLI for downloading, processing, and making a mosaic from Sentinel-1, -2 and -3 data

  •    Python

Sentinel Util is a command line utility to create a mosaic from Sentinel images. out The folder where the image file will be written (i.e. /path/to/your/folder).

robosat - Semantic segmentation on aerial and satellite imagery

  •    Python

RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars. Have a look at this OpenStreetMap diary post where we first introduced RoboSat and show some results.

satellite-image-object-detection - YOLO/YOLOv2 inspired deep network for object detection on satellite images (Tensorflow, Numpy, Pandas)

  •    Python

The dataset is/was available on https://www.datasciencechallenge.org/challenges/1/safe-passage/ . preprocess.py lets you transform the 2000x2000 images into 250x250 images and a CSV file with all the objects annotations. The dataset contains only the position of the center of the objects (no bounding boxes). A bounding box is generated. It's just a square centered on the provided position (x,y). The size of the square varies depending on the type of vehicle. We're using 8 object classes: Motorcycle, Light short rear, Light long rear, Dark short rear, Dark long rear, Red short rear, Red long rear, Light van. Other types of vehicles are ignored.

MODIStsp - An "R" package for automatic download and preprocessing of MODIS Land Products Time Series

  •    R

MODIStsp is a “R” package devoted to automatizing the creation of time series of rasters derived from MODIS Land Products data. MODIStsp allows to perform several preprocessing steps (e.g., download, mosaicing, reprojection and resize) on MODIS data available within a given time period. Users have the ability to select which specific layers of the original MODIS HDF files they want to process. They also can select which additional Quality Indicators should be extracted from the aggregated MODIS Quality Assurance layers and, in the case of Surface Reflectance products, which Spectral Indexes should be computed from the original reflectance bands. For each output layer, outputs are saved as single-band raster filescorresponding to each available acquisition date. Virtual files allowing access to the entire time series as a single file can be also created. All processing parameters can be easily selected with a user-friendly GUI, although non-interactive execution exploiting a previously created Options File is possible. Stand-alone execution outside an “R” environment is also possible, allowing to use scheduled execution of MODIStsp to automatically update time series related to a MODIS product and extent whenever a new image is available. L. Busetto, L. Ranghetti (2016) MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series, Computers & Geosciences, Volume 97, Pages 40-48, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2016.08.020, URL: https://github.com/ropensci/MODIStsp.

gnd-android - Ground for Android

  •    Java

Ground is a map-centric data collection platform for occasionally connected devices. This is not an officially supported Google product; it is currently being developed by volunteers on a best-effort basis.

ground-android - Ground mobile data collection app for Android

  •    Java

Ground is a free, map-centric data collection platform for occasionally connected devices. This is not an officially supported Google product; it is currently being developed by volunteers on a best-effort basis.

notebooks - interactive notebooks from Planet Engineering

  •    Jupyter

In this repository, you'll find a collection of Jupyter notebooks from the software developers, data scientists, and developer advocates at Planet. These interactive, open-source (APLv2) guides are designed to help you explore Planet data, work with our APIs and tools, and learn how to extract information from our massive archive of high-cadence satellite imagery. We hope these guides will inspire you to ask interesting questions of Planet data. Need help? Find a bug? Please file an issue and we'll get back to you. Soon we hope to add notebooks from the researchers, technologists, geographers, and entrepreneurs who are already using Planet data to ask interesting and innovative questions about our changing Earth. If you're working with our imagery and have a notebook (or just an idea for a notebook) that you'd like to share, please file an issue and let us know.