Displaying 1 to 20 from 47 results

implicit - Fast Python Collaborative Filtering for Implicit Feedback Datasets

  •    Python

Fast Python Collaborative Filtering for Implicit Datasets. Alternating Least Squares as described in the papers Collaborative Filtering for Implicit Feedback Datasets and Applications of the Conjugate Gradient Method for Implicit Feedback Collaborative Filtering.

Recommenders - Recommender Systems

  •    Jupyter

Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting train/test data. Implementations of several state-of-the-art algorithms are provided for self-study and customization in your own applications. Please see the setup guide for more details on setting up your machine locally, on Spark, or on Azure Databricks.

spotlight - Deep recommender models using PyTorch.

  •    Python

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. See the full documentation for details.




lightfm - A Python implementation of LightFM, a hybrid recommendation algorithm.

  •    Python

LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

recommenders - TensorFlow Recommenders is a library for building recommender system models using TensorFlow

  •    Python

TensorFlow Recommenders is a library for building recommender system models using TensorFlow. It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.


Qdrant - Neural Search Engine, Vector Similarity Search Engine with extended filtering support

  •    Rust

Qdrant ( quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. Qdrant is tailored to extended filtering support. It makes it useful for all sorts of neural-network or semantic-based matching, faceted search, and other applications. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more.

tensorrec - A TensorFlow recommendation algorithm and framework in Python.

  •    Python

A TensorFlow recommendation algorithm and framework in Python. TensorRec is a Python recommendation system that allows you to quickly develop recommendation algorithms and customize them using TensorFlow.

fastFM - fastFM: A Library for Factorization Machines

  •    Python

The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citations of the software. If you publish scientific articles using fastFM, please cite the following article (bibtex entry citation.bib). This repository allows you to use Factorization Machines in Python (2.7 & 3.x) with the well known scikit-learn API. All performance critical code as been written in C and wrapped with Cython. fastFM provides stochastic gradient descent (SGD) and coordinate descent (CD) optimization routines as well as Markov Chain Monte Carlo (MCMC) for Bayesian inference. The solvers can be used for regression, classification and ranking problems. Detailed usage instructions can be found in the online documentation and on arXiv.

recsim - A Configurable Recommender Systems Simulation Platform

  •    Python

RecSim is a configurable platform for authoring simulation environments for recommender systems (RSs) that naturally supports sequential interaction with users. RecSim allows the creation of new environments that reflect particular aspects of user behavior and item structure at a level of abstraction well-suited to pushing the limits of current reinforcement learning (RL) and RS techniques in sequential interactive recommendation problems. Environments can be easily configured that vary assumptions about: user preferences and item familiarity; user latent state and its dynamics; and choice models and other user response behavior. We outline how RecSim offers value to RL and RS researchers and practitioners, and how it can serve as a vehicle for academic-industrial collaboration. For a detailed description of the RecSim architecture please read Ie et al. Please cite the paper if you use the code from this repository in your work. This is not an officially supported Google product.

buffalo - TOROS Buffalo: A fast and scalable production-ready open source project for recommender systems

  •    Python

Buffalo is a fast and scalable production-ready open source project for recommender systems. Buffalo effectively utilizes system resources, enabling high performance even on low-spec machines. The implementation is optimized for CPU and SSD. Even so, it shows good performance with GPU accelerator, too. Buffalo, developed by Kakao, has been reliably used in production for various Kakao services. This software is licensed under the Apache 2 license, quoted below.

winerama-recommender-tutorial - A wine recommender system tutorial using Python technologies such as Django, Pandas, or Scikit-learn, and others such as Bootstrap

  •    Python

This repository contains the code for a wine reviews and recommendations web application, in different stages as git tags. The idea is that you can follow the tutorials through the tags listed below, and learn the different concepts explained in them. The tutorials include instructions on how to deploy the web using a Koding account. However, Koding recently moved from solo to team accounts and the link provided to my Koding account deployment of the tutorial result is not working anymore. The tutorial can still be followed with no problem at all. The following tutorials will guide you through each of the previous Git tags while learning different concepts of data product development with Python.

Recommendation Engine Demo

  •    

How does the Amazon recommendation works? This is about visualizing the item to item collaborations filtering mechanism using a item-to-item matrix table. The item-to-item matrix, the vectors and the calculated data values are displayed. There are n different items and...

awesome-RecSys-papers - The awesome and classic papers in recommendation system!!! Good luck to every RecSys-learner!

  •    

The topic of my dissertation is recommendation system. I collected some classic and awesome papers here. Good luck to every RecSys-learner. My email is ZhangYuyang4d@163.com. If you find any mistakes, or you have some suggestions, just send a email to me.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.