Displaying 1 to 20 from 91 results

xarray - N-D labeled arrays and datasets in Python

  •    Python

xarray (formerly xray) is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core pandas data structures. Our goal is to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels. Our approach adopts the Common Data Model for self- describing scientific data in widespread use in the Earth sciences: xarray.Dataset is an in-memory representation of a netCDF file.

PythonDataScienceHandbook - Python Data Science Handbook: full text in Jupyter Notebooks

  •    Jupyter

This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks. Run the code using the Jupyter notebooks available in this repository's notebooks directory.

holoviews - Stop plotting your data - annotate your data and let it visualize itself.

  •    Python

Stop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data analysis and visualization seamless and simple. With HoloViews, you can usually express what you want to do in very few lines of code, letting you focus on what you are trying to explore and convey, not on the process of plotting.

mlcourse_open - OpenDataScience Machine Learning course. Both in English and Russian

  •    Python

This is the list of published articles on medium.com 🇬🇧, habr.com 🇷🇺, and jqr.com 🇨🇳. Icons are clickable. Also, links to Kaggle Kernels (in English) are given. This way one can reproduce everything without installing a single package. Assignments will be announced each week. Meanwhile, you can pratice with demo versions. Solutions will be discussed in the upcoming run of the course.

pandas_exercises - Practice your pandas skills!

  •    Jupyter

Fed up with a ton of tutorials but no easy way to find exercises I decided to create a repo just with exercises to practice pandas. Don't get me wrong, tutorials are great resources, but to learn is to do. So unless you practice you won't learn. My suggestion is that you learn a topic in a tutorial or video and then do exercises. Learn one more topic and do exercises. If you got the answer wrong, don't go directly to the solution with code.

pandas - Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data

  •    Python

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal. Binary installers for the latest released version are available at the Python package index and on conda.

python-cheat-sheet - Python Cheat Sheet NumPy, Matplotlib

  •    Jupyter

This rep is a growing list of Python cheat sheets, tailored for Data Science. If you want to install a package individually, go into the corresponding <package-name>.md file for instructions on how to install.

100-pandas-puzzles - 100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

  •    Jupyter

Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of pandas' power. Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects. Many of the excerises here are straightforward in that the solutions require no more than a few lines of code (in pandas or NumPy - don't go using pure Python!). Choosing the right methods and following best practices is the underlying goal.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

weld - High-performance runtime for data analytics applications

  •    Rust

Weld is a language and runtime for improving the performance of data-intensive applications. It optimizes across libraries and functions by expressing the core computations in libraries using a common intermediate representation, and optimizing across each framework. Modern analytics applications combine multiple functions from different libraries and frameworks to build complex workflows. Even though individual functions can achieve high performance in isolation, the performance of the combined workflow is often an order of magnitude below hardware limits due to extensive data movement across the functions. Weld’s take on solving this problem is to lazily build up a computation for the entire workflow, and then optimizing and evaluating it only when a result is needed.

pandas-datareader - Extract data from a wide range of Internet sources into a pandas DataFrame.

  •    HTML

Up to date remote data access for pandas, works for multiple versions of pandas. As of v0.6.0 Yahoo!, Google Options, Google Quotes and EDGAR have been immediately deprecated due to large changes in their API and no stable replacement.

django-rest-pandas - 📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i

  •    Python

Django REST Pandas (DRP) provides a simple way to generate and serve pandas DataFrames via the Django REST Framework. The resulting API can serve up CSV (and a number of other formats) for consumption by a client-side visualization tool like d3.js. The design philosophy of DRP enforces a strict separation between data and presentation. This keeps the implementation simple, but also has the nice side effect of making it trivial to provide the source data for your visualizations. This capability can often be leveraged by sending users to the same URL that your visualization code uses internally to load the data.

pandas-videos - Jupyter notebook and datasets from the pandas Q&A video series

  •    Jupyter

Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas.

alphalens - Performance analysis of predictive (alpha) stock factors

  •    Jupyter

Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open source backtesting library, and Pyfolio which provides performance and risk analysis of financial portfolios.Check out the example notebooks for more on how to read and use the factor tear sheet.