Displaying 1 to 20 from 44 results

jetson-inference - Guide to deploying deep-learning inference networks and deep vision primitives with TensorRT and NVIDIA Jetson

  •    C++

Welcome to our training guide for inference and deep vision runtime library for NVIDIA DIGITS and Jetson Xavier/TX1/TX2. This repo uses NVIDIA TensorRT for efficiently deploying neural networks onto the embedded platform, improving performance and power efficiency using graph optimizations, kernel fusion, and half-precision FP16 on the Jetson.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.




ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

attention-ocr - A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine

  •    Python

Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the trained model with weights as a SavedModel or a frozen graph. This project is based on a model by Qi Guo and Yuntian Deng. You can find the original model in the da03/Attention-OCR repository.

photonix - A modern, web-based photo management server

  •    Python

This is a photo management application based on web technologies. Run it on your home server and it will let you find what you want from your photo collection using any device. Smart filtering is made possible automatically by object recognition, location awareness, color analysis and other algorithms. This project is currently in development and not feature complete for a version 1.0 yet. If you don't mind putting up with broken parts or want to help out, run the Docker image and give it a go. I'd love for other contributors to get involved.

PaddleClas - A treasure chest for visual recognition powered by PaddlePaddle

  •    Python

PaddleClas is an image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios. A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks. Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.


Kur - Descriptive Deep Learning

  •    Python

Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

channel-pruning - Channel Pruning for Accelerating Very Deep Neural Networks

  •    Python

Please have a look at AMC: AutoML for Model Compression and Acceleration on Mobile Devices ECCV'18, which combines channel pruning and reinforcement learning to further accelerate CNN.

bootcamp - Dealing with all unstructured data, such as reverse image search, audio search, molecular search, video analysis, question and answer systems, NLP, etc

  •    Python

Embed everything, thanks to AI, we can use neural networks to extract feature vectors from unstructured data, such as image, audio and vide etc. Then analyse the unstructured data by calculating the feature vectors, for example calculating the Euclidean or Cosine distance of the vectors to get the similarity. Milvus Bootcamp is designed to expose users to both the simplicity and depth of the Milvus vector database. Discover how to run benchmark tests as well as build similarity search applications like chatbots, recommender systems, reverse image search, molecular search, video search, audio search, and more.

what_the_thing - :camera: Point camera at things to learn how to say them in a different language

  •    Javascript

Point camera at things to learn how to say them in a different language.Native Android App built with React Native.

OpenALPR - Automatic License Plate Recognition library

  •    C++

OpenALPR is an open source Automatic License Plate Recognition library written in C++ with bindings in C#, Java, Node.js, and Python. The library analyzes images and video streams to identify license plates. The output is the text representation of any license plate characters.

LargeMargin_Softmax_Loss - Implementation for <Large-Margin Softmax Loss for Convolutional Neural Networks> in ICML'16

  •    C++

We introduce a large-margin softmax (L-Softmax) loss for convolutional neural networks. L-Softmax loss can greatly improve the generalization ability of CNNs, so it is very suitable for general classification, feature embedding and biometrics (e.g. face) verification. We give the 2D feature visualization on MNIST to illustrate our L-Softmax loss. The paper is published in ICML 2016 and also available at arXiv.

saliency - TensorFlow implementation for SmoothGrad, Grad-CAM, Guided backprop, Integrated Gradients and other saliency techniques

  •    Jupyter

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.

fashion - The Fashion-MNIST dataset and machine learning models.

  •    R

Training AI machine learning models on the Fashion MNIST dataset. Fashion-MNIST is a dataset consisting of 70,000 images (60k training and 10k test) of clothing objects, such as shirts, pants, shoes, and more. Each example is a 28x28 grayscale image, associated with a label from 10 classes. The 10 classes are listed below.

einstein-vision-node - Example image recognition web app using Einstein Vision Heroku Add-on

  •    Javascript

This Node.js sample app lets you upload an image to get predictions from Salesforce Einstein Vision general classifier using the Add-on. When deploying this app, a new Einstein Vision add-on will be created which includes an Einstein Vision account.

cordova-plugin-tensorflow - On-device image recognition via TensorFlow/Inception

  •    Objective-C++

The plugin provides a TensorFlow class that can be used to initialize graphs and run the inference algorithm. To use a custom model, follow the steps to retrain the model and optimize it for mobile use. Put the .pb and .txt files in a HTTP-accessible zip file, which will be downloaded via the FileTransfer plugin. If you use the generic Inception model it will be downloaded from the TensorFlow website on first use.