Displaying 1 to 7 from 7 results

StarGAN - Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

  •    Python

PyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.

pix2pix - Image-to-image translation with conditional adversarial nets

  •    Lua

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR, 2017. On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

CycleGAN - Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more

  •    Lua

This package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning. The code was written by Jun-Yan Zhu and Taesung Park. Note: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.

iGAN - Interactive Image Generation via Generative Adversarial Networks

  •    Python

[Project] [Youtube] [Paper] A research prototype developed by UC Berkeley and Adobe CTL. Latest development: [pix2pix]: Torch implementation for learning a mapping from input images to output images. [CycleGAN]: Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs. [pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.




pytorch-CycleGAN-and-pix2pix - Image-to-image translation in PyTorch (e

  •    Python

This is our PyTorch implementation for both unpaired and paired image-to-image translation. It is still under active development. The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.

RealismCNN - code for predicting and improving visual realism in composite images

  •    Matlab

Learning a Discriminative Model for the Perception of Realism in Composite Images Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros IEEE International Conference on Computer Vision (ICCV). 2015. This is the authors' implementation of (1) visual realism prediction and (2) color adjustment methods, described in the above paper. Please cite our paper if you use our code and data for your research.