Displaying 1 to 2 from 2 results

sense2vec - 🦆 Use NLP to go beyond vanilla word2vec

  •    C++

sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting, detailed and context-sensitive word vectors. For an interactive example of the technology, see our sense2vec demo that lets you explore semantic similarities across all Reddit comments of 2015. This library is a simple Python/Cython implementation for loading and querying sense2vec models. While it's best used in combination with spaCy, the sense2vec library itself is very lightweight and can also be used as a standalone module. See below for usage details.

nonce2vec - This is the repo accompanying the paper "High-risk learning: acquiring new word vectors from tiny data" (Herbelot & Baroni, 2017)

  •    Python

A. Herbelot and M. Baroni. 2017. High-risk learning: Acquiring new word vectors from tiny data. Proceedings of EMNLP 2017 (Conference on Empirical Methods in Natural Language Processing). Distributional semantics models are known to struggle with small data. It is generally accepted that in order to learn 'a good vector' for a word, a model must have sufficient examples of its usage. This contradicts the fact that humans can guess the meaning of a word from a few occurrences only. In this paper, we show that a neural language model such as Word2Vec only necessitates minor modifications to its standard architecture to learn new terms from tiny data, using background knowledge from a previously learnt semantic space. We test our model on word definitions and on a nonce task involving 2-6 sentences' worth of context, showing a large increase in performance over state-of-the-art models on the definitional task.