Displaying 1 to 8 from 8 results

gensim - Topic Modelling for Humans

  •    Python

Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

sense2vec - 🦆 Use NLP to go beyond vanilla word2vec

  •    C++

sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting, detailed and context-sensitive word vectors. For an interactive example of the technology, see our sense2vec demo that lets you explore semantic similarities across all Reddit comments of 2015. This library is a simple Python/Cython implementation for loading and querying sense2vec models. While it's best used in combination with spaCy, the sense2vec library itself is very lightweight and can also be used as a standalone module. See below for usage details.

text-analytics-with-python - Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, "Text Analytics with Python" published by Apress/Springer

  •    Python

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.

magnitude - A fast, efficient universal vector embedding utility package.

  •    Python

A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim, but can be used as a generic key-vector store for domains outside NLP. Vector space embedding models have become increasingly common in machine learning and traditionally have been popular for natural language processing applications. A fast, lightweight tool to consume these large vector space embedding models efficiently is lacking.




wikimark - get a sens of it

  •    Python

wikimark goal is to give you an idea of what the text is about. You can also use your own corpus.

gensim-data - Data repository for pretrained NLP models and NLP corpora.

  •    Python

Research datasets regularly disappear, change over time, become obsolete or come without a sane implementation to handle the data format reading and processing. For this reason, Gensim launched its own dataset storage, committed to long-term support, a sane standardized usage API and focused on datasets for unstructured text processing (no images or audio). This Gensim-data repository serves as that storage.

Word2VecAndTsne - Scripts demo-ing how to train a Word2Vec model and reduce its vector space

  •    Python

To use this code, you'll need to install some pretty hefty libraries. Luckily, they all install very easily.

hcn - Hybrid Code Networks https://arxiv.org/abs/1702.03274

  •    Python

End-to-end learning of recurrent neural networks (RNNs) is an attractive solution for dialog systems; however, current techniques are data-intensive and require thousands of dialogs to learn simple behaviors. We introduce Hybrid Code Networks (HCNs), which combine an RNN with domain-specific knowledge encoded as software and system action templates. Compared to existing end-to-end approaches, HCNs considerably reduce the amount of training data required, while retaining the key benefit of inferring a latent representation of dialog state. In addition, HCNs can be optimized with supervised learning, reinforcement learning, or a mixture of both. HCNs attain state-of-the-art performance on the bAbI dialog dataset, and outperform two commercially deployed customer-facing dialog systems.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.