PyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.
stargan gan image-to-image-translation pytorch generative-adversarial-network image-manipulation computer-vision neural-networksA composable GAN API and CLI. Built for developers, researchers, and artists. HyperGAN is currently in open beta.
gan supervised-learning unsupervised-learning learning generative-adversarial-network generative-model artificial-intelligence machine-learning machine-learning-api tensorflow classification generator discriminatorPytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1 1NVIDIA Corporation, 2UC Berkeley In arxiv, 2017.
gan deep-learning deep-neural-networks pytorch pix2pix image-to-image-translation generative-adversarial-network computer-vision computer-graphicsImage-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR, 2017. On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.
computer-vision computer-graphics gan pix2pix dcgan generative-adversarial-network deep-learning image-generation image-manipulation image-to-image-translationThis package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning. The code was written by Jun-Yan Zhu and Taesung Park. Note: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.
gan generative-adversarial-network deep-learning image-generation image-manipulation cyclegan pix2pix gans computer-vision computer-graphics torch[Project] [Youtube] [Paper] A research prototype developed by UC Berkeley and Adobe CTL. Latest development: [pix2pix]: Torch implementation for learning a mapping from input images to output images. [CycleGAN]: Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs. [pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.
generative-adversarial-network image-manipulation computer-graphics computer-vision gan pix2pix dcgan deep-learningThis is our PyTorch implementation for both unpaired and paired image-to-image translation. It is still under active development. The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.
pytorch gan cyclegan pix2pix deep-learning computer-vision computer-graphics image-manipulation image-generation generative-adversarial-network gansAdding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Here is a playground notebook for faceswap-GAN v2.2 on Google Colab. Users can train their own model in the browser without GPU required.
face-swap generative-adversarial-network gan gans image-manipulationYou can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here. Contributions are welcome. Add links through pull requests in gans.tsv file in the same format or create an issue to lemme know something I missed or to start a discussion.
machine-learning gan generative-adversarial-networkIn these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.
neural-network pytorch-tutorial batch-normalization cnn rnn autoencoder pytorch regression classification batch tutorial dropout dqn reinforcement-learning gan generative-adversarial-network machine-learningIn these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. All methods mentioned below have their video and text tutorial in Chinese. Visit 莫烦 Python for more.
tensorflow tensorflow-tutorials gan generative-adversarial-network rnn cnn classification regression autoencoder deep-q-network dqn machine-learning tutorial dropout neural-networkMMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch works with PyTorch 1.3 to 1.6.
pytorch generative-adversarial-network image-generation super-resolution inpainting mattingAn op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind. This repository contains an op-for-op PyTorch reimplementation of DeepMind's BigGAN that was released with the paper Large Scale GAN Training for High Fidelity Natural Image Synthesis by Andrew Brock, Jeff Donahue and Karen Simonyan.
computer-vision neural-network pytorch artificial-intelligence generative-adversarial-network gan bigganThis is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR for the original implementation using Tensorflow. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network.
deep-learning pytorch generative-adversarial-network gan frechet-distance fid inception-score fid-scoreAn open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Gated Convolution (ICCV 2019 Oral). For the code of previous version (DeepFill v1), please checkout branch v1.0.0.
deep-neural-networks tensorflow generative-adversarial-network image-inpainting attention-model deepfillThis repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirsiavash, Antonio Torralba, to appear at NIPS 2016. The model learns to generate tiny videos using adversarial networks. Below are some selected videos that are generated by our model. These videos are not real; they are hallucinated by a generative video model. While they are not photo-realistic, the motions are fairly reasonable for the scene category they are trained on.
computer-vision video generative-adversarial-network deep-learningPytorch implementation for multimodal image-to-image translation. For example, given the same night image, our model is able to synthesize possible day images with different types of lighting, sky and clouds. The training requires paired data. Note: The current software works well with PyTorch 0.4. Check out the older branch that supports PyTorch 0.1-0.3.
pytorch pix2pix gans generative-adversarial-network deep-learningWelcome to my GitHub repo. I am a Data Scientist and I code in R, Python and Wolfram Mathematica. Here you will find some Machine Learning, Deep Learning, Natural Language Processing and Artificial Intelligence models I developed.
anomaly-detection deep-learning autoencoder keras keras-models denoising-autoencoders generative-adversarial-network glove keras-layer word2vec nlp natural-language-processing sentiment-analysis opencv segnet resnet-50 variational-autoencoder t-sne svm-classifier latent-dirichlet-allocationIf you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting. Features for context encoder trained with reconstruction loss.
image-inpainting context-encoders unsupervised-learning machine-learning generative-adversarial-network deep-learning computer-vision gan dcgan computer-graphicsThe purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.
gan adversarial-networks arxiv neural-network unsupervised-learning adversarial-nets image-synthesis deep-learning generative-adversarial-network medical-imaging tensorflow pytorch paper cgan ct-denoising segmentation medical-image-synthesis reconstruction detection classification
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.