Displaying 1 to 7 from 7 results

LightGBM - A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks

  •    C++

For more details, please refer to Features.Experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

xgboost - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more

  •    C++

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.




fast_retraining - Show how to perform fast retraining with LightGBM in different business cases

  •    Jupyter

In this repo we compare two of the fastest boosted decision tree libraries: XGBoost and LightGBM. We will evaluate them across datasets of several domains and different sizes.On July 25, 2017, we published a blog post evaluating both libraries and discussing the benchmark results. The post is Lessons Learned From Benchmarking Fast Machine Learning Algorithms.

machine_learning - machine learning applied to NLP without deep learning

  •    Python

The purpose of this respository is use machine learning to solve NLP problem without involving deep learning releted technology. So only traditional machine learning methods will be used here. It will include Naive Bayes, Decision Tree, Random Forest,GBDT and so on. We will first use Naive Bayes to do binary classification, which is to classify a sentence releted to be a 'theft' or not.

xgboost-node - Run XGBoost model and make predictions in Node.js

  •    Cuda

XGBoost-Node is a Node.js interface of XGBoost. XGBoost is a library from DMLC. It is designed and optimized for boosted trees. The underlying algorithm of XGBoost is an extension of the classic gbm algorithm. With multi-threads and regularization, XGBoost is able to utilize more computational power and get a more accurate prediction. The package is made to run existing XGBoost model with Node.js easily.