Displaying 1 to 20 from 166 results

MXNet - A Deep Learning Framework


MXNet is an open-source deep learning framework that allows you to define, train, and deploy deep neural networks on a wide array of devices, from cloud infrastructure to mobile devices. It is highly scalable, allowing for fast model training, and supports a flexible programming model and multiple languages. MXNet allows you to mix symbolic and imperative programming flavors to maximize both efficiency and productivity.

CNTK - Computational Network Toolkit (CNTK)


The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

keras - Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.


Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.


Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.




PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration


PyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

deepvariant - DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data


DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data.DeepVariant is a suite of Python/C++ programs that run on any Unix-like operating system. For convenience the documentation refers to building and running DeepVariant on Google Cloud Platform, but the tools themselves can be built and run on any standard Linux computer, including on-premise machines. Note that DeepVariant currently requires Python 2.7 and does not yet work with Python 3.

tangent - Source-to-Source Debuggable Derivatives in Pure Python


Tangent is a new, free, and open-source Python library for automatic differentiation.Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools.

Forge - A neural network toolkit for Metal


Forge is a collection of helper code that makes it a little easier to construct deep neural networks using Apple's MPSCNN framework. Conversion functions. MPSCNN uses MPSImages and MTLTextures for everything, often using 16-bit floats. But you probably want to work with Swift [Float] arrays. Forge's conversion functions make it easy to work with Metal images and textures.


tvm - bring deep learning workloads to bare metal


TVM is a Tensor intermediate representation(IR) stack for deep learning systems. It is designed to close the gap between the productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends. TVM works with deep learning frameworks to provide end to end compilation to different backends. Checkout our announcement for more details.© Contributors, 2017. Licensed under an Apache-2.0 license.

incubator-mxnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more


Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

pytorch-tutorial - PyTorch Tutorial for Deep Learning Researchers


This repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less than 30 lines of code. Before starting this tutorial, it is recommended to finish Official Pytorch Tutorial.

nnvm - Bring deep learning to bare metal


The following code snippet demonstrates the general workflow of nnvm compiler.Licensed under an Apache-2.0 license.

DeepSpeech - A TensorFlow implementation of Baidu's DeepSpeech architecture


Project DeepSpeech is an open source Speech-To-Text engine. It uses a model trained by machine learning techniques, based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow project to make the implementation easier.

ELF - An End-To-End, Lightweight and Flexible Platform for Game Research


ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. In comparison, other platforms (e.g., OpenAI Gym) wraps one single game instance with one Python interface. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms. Besides, ELF now also provides a Python version for running concurrent game environments, by Python multiprocessing with ZeroMQ inter-process communication. See ./ex_elfpy.py for a simple example.

neuralconvo - Neural conversational model in Torch


This is an attempt at implementing Sequence to Sequence Learning with Neural Networks (seq2seq) and reproducing the results in A Neural Conversational Model (aka the Google chatbot). Human: What is the purpose of living? Machine: To live forever.

CADL - Course materials/Homework materials for the FREE MOOC course on "Creative Applications of Deep Learning w/ Tensorflow" #CADL


This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for the first of three Kadenze Academy courses on Creative Applications of Deep Learning w/ Tensorflow. It also contains a python package containing all the code developed during all three courses. The first course makes heavy usage of Jupyter Notebook. This will be necessary for submitting the homeworks and interacting with the guided session notebooks I will provide for each assignment. Follow along this guide and we'll see how to obtain all of the necessary libraries that we'll be using. By the end of this, you'll have installed Jupyter Notebook, NumPy, SciPy, and Matplotlib. While many of these libraries aren't necessary for performing the Deep Learning which we'll get to in later lectures, they are incredibly useful for manipulating data on your computer, preparing data for learning, and exploring results.