Displaying 1 to 12 from 12 results

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

TransmogrifAI - TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Spark with minimal hand tuning

  •    Scala

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Spark. It was developed with a focus on accelerating machine learning developer productivity through machine learning automation, and an API that enforces compile-time type-safety, modularity, and reuse. Through automation, it achieves accuracies close to hand-tuned models with almost 100x reduction in time. Skip to Quick Start and Documentation.

featuretools - automated feature engineering

  •    Python

Featuretools is a python library for automated feature engineering. See the documentation for more information. Below is an example of using Deep Feature Synthesis (DFS) to perform automated feature engineering. In this example, we apply DFS to a multi-table dataset consisting of timestamped customer transactions.

PocketFlow - An Automatic Model Compression (AutoMC) framework for developing smaller and faster AI applications

  •    Python

PocketFlow is an open-source framework for compressing and accelerating deep learning models with minimal human effort. Deep learning is widely used in various areas, such as computer vision, speech recognition, and natural language translation. However, deep learning models are often computational expensive, which limits further applications on mobile devices with limited computational resources. PocketFlow aims at providing an easy-to-use toolkit for developers to improve the inference efficiency with little or no performance degradation. Developers only needs to specify the desired compression and/or acceleration ratios and then PocketFlow will automatically choose proper hyper-parameters to generate a highly efficient compressed model for deployment.




darts - Differentiable architecture search for convolutional and recurrent networks

  •    Python

DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arXiv:1806.09055. NOTE: PyTorch 0.4 is not supported at this moment and would lead to OOM.

auto_ml - Automated machine learning for analytics & production

  •    Python

auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

nni - An open source AutoML toolkit for neural architecture search and hyper-parameter tuning.

  •    TypeScript

NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning experiments. The tool dispatches and runs trial jobs that generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in different environments (e.g. local machine, remote servers and cloud). This command will start an experiment and a WebUI. The WebUI endpoint will be shown in the output of this command (for example, http://localhost:8080). Open this URL in your browser. You can analyze your experiment through WebUI, or browse trials' tensorboard.


SMAC3 - Sequential Model-based Algorithm Configuration

  •    Python

Attention: This package is under heavy development and subject to change. A stable release of SMAC (v2) in Java can be found here. The documentation can be found here.

Milano - Milano is a tool for automating hyper-parameters search for your models on a backend of your choice

  •    Python

Milano (Machine learning autotuner and network optimizer) is a tool for enabling machine learning researchers and practitioners to perform massive hyperparameters and architecture searches. Your script can use any framework of your choice, for example, TensorFlow, PyTorch, Microsoft Cognitive Toolkit etc. or no framework at all. Milano only requires minimal changes to what your script accepts via command line and what it returns to stdout.