Displaying 1 to 11 from 11 results

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

TransmogrifAI - TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Spark with minimal hand tuning

  •    Scala

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Spark. It was developed with a focus on accelerating machine learning developer productivity through machine learning automation, and an API that enforces compile-time type-safety, modularity, and reuse. Through automation, it achieves accuracies close to hand-tuned models with almost 100x reduction in time. Skip to Quick Start and Documentation.

featuretools - automated feature engineering

  •    Python

Featuretools is a python library for automated feature engineering. See the documentation for more information. Below is an example of using Deep Feature Synthesis (DFS) to perform automated feature engineering. In this example, we apply DFS to a multi-table dataset consisting of timestamped customer transactions.

xcessiv - A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python

  •    Python

Stacked ensembles are simple in theory. You combine the predictions of smaller models and feed those into another model. However, in practice, implementing them can be a major headache. Xcessiv holds your hand through all the implementation details of creating and optimizing stacked ensembles so you're free to fully define only the things you care about.

auto_ml - Automated machine learning for analytics & production

  •    Python

auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

SMAC3 - Sequential Model-based Algorithm Configuration

  •    Python

Attention: This package is under heavy development and subject to change. A stable release of SMAC (v2) in Java can be found here. The documentation can be found here.

conveyer - Machine Learning for everybody.

  •    Python

Machine Learning for everybody. conveyer is an automated machine learning library. Free for personal use only. Contact @yusugomori for commercial use or more details.