Displaying 1 to 20 from 209 results

MXNet - A Deep Learning Framework

  •    C++

MXNet is an open-source deep learning framework that allows you to define, train, and deploy deep neural networks on a wide array of devices, from cloud infrastructure to mobile devices. It is highly scalable, allowing for fast model training, and supports a flexible programming model and multiple languages. MXNet allows you to mix symbolic and imperative programming flavors to maximize both efficiency and productivity.

CNTK - Computational Network Toolkit (CNTK)

  •    C++

The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.

  •    Go

Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

IAMDinosaur - 🦄 An Artificial Inteligence to teach Google's Dinosaur to jump cactus

  •    Javascript

A simple artificial intelligence to teach Google Chrome's offline dinosaur to jump cactus, using Neural Networks and a simple Genetic Algorithm.Install Node.js on your computer.




incubator-mxnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

  •    C++

Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

ELF - An End-To-End, Lightweight and Flexible Platform for Game Research

  •    C++

ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. In comparison, other platforms (e.g., OpenAI Gym) wraps one single game instance with one Python interface. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms. Besides, ELF now also provides a Python version for running concurrent game environments, by Python multiprocessing with ZeroMQ inter-process communication. See ./ex_elfpy.py for a simple example.

fairseq-py - Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

  •    Python

This is a PyTorch version of fairseq, a sequence-to-sequence learning toolkit from Facebook AI Research. The original authors of this reimplementation are (in no particular order) Sergey Edunov, Myle Ott, and Sam Gross. The toolkit implements the fully convolutional model described in Convolutional Sequence to Sequence Learning and features multi-GPU training on a single machine as well as fast beam search generation on both CPU and GPU. We provide pre-trained models for English to French and English to German translation. Currently fairseq-py requires PyTorch version >= 0.3.0. Please follow the instructions here: https://github.com/pytorch/pytorch#installation.


nupic - Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex

  •    Python

The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implements the HTM learning algorithms. HTM is a detailed computational theory of the neocortex. At the core of HTM are time-based continuous learning algorithms that store and recall spatial and temporal patterns. NuPIC is suited to a variety of problems, particularly anomaly detection and prediction of streaming data sources. For more information, see numenta.org or the NuPIC Forum. For usage guides, quick starts, and API documentation, see http://nupic.docs.numenta.org/.

TensorFlow - Artificial Intelligence Library from Google

  •    C++

TensorFlow is a library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code.

Snake - Artificial intelligence of the Snake game.

  •    Python

This project focuses on the artificial intelligence of the Snake game. The snake's goal is to eat the food continuously and fill the map with its bodies ASAP. The old version of this project is written in C++. Now it has been rewritten using Python for a user-friendly GUI and the simplicity in the implementations of algorithms. Requirements: Python 3.5+ with Tkinter installed.

shogun - Shōgun

  •    C++

Unified and efficient Machine Learning since 1999. Buildbot: http://buildbot.shogun-toolbox.org/waterfall.

caffe2 - Caffe2 is a lightweight, modular, and scalable deep learning framework.

  •    C++

Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind.

ncnn - ncnn is a high-performance neural network inference framework optimized for the mobile platform

  •    C

ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployment and uses on mobile phones from the beginning of design. ncnn does not have third party dependencies. it is cross-platform, and runs faster than all known open source frameworks on mobile phone cpu. Developers can easily deploy deep learning algorithm models to the mobile platform by using efficient ncnn implementation, create intelligent APPs, and bring the artificial intelligence to your fingertips. ncnn is currently being used in many Tencent applications, such as QQ, Qzone, WeChat, Pitu and so on.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

polyaxon - An open source platform for reproducible machine learning and deep learning on kubernetes

  •    Python

Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

fairseq - Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

  •    Python

We also provide pre-trained models for several benchmark translation datasets. Currently fairseq requires PyTorch version >= 0.4.0. Please follow the instructions here: https://github.com/pytorch/pytorch#installation.