MobilePose-pytorch - Single Person Pose Estimation for Mobile Device

  •        803

MobilePose is a Tiny PyTorch implementation of single person 2D pose estimation framework. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options. And final trained model can satisfy basic requirements(speed+size+accuracy) for mobile device. Some codes for mobilenetV2 and display are brought from pytorch-mobilenet-v2 and tf-pose-estimation. Thanks to the original authors.



Related Projects

deep-head-pose - :fire::fire: Deep Learning Head Pose Estimation using PyTorch.

  •    Python

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance. For details about the method and quantitative results please check the paper.

AlphaPose - Multi-Person Pose Estimation System

  •    Jupyter

Alpha Pose is an accurate multi-person pose estimator, which is the first open-source system that achieves 70+ mAP (72.3 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset. To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset. Note: Please read PoseFlow/ for details.

audiomentations - A Python library for audio data augmentation

  •    Python

A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and partially multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products. Note: ffmpeg can be installed via e.g. conda or from the official ffmpeg download page.

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.

pytorch-segmentation-detection - Image Segmentation and Object Detection in Pytorch

  •    Jupyter

So far, the library contains an implementation of FCN-32s (Long et al.), Resnet-18-8s, Resnet-34-8s (Chen et al.) image segmentation models in Pytorch and Pytorch/Vision library with training routine, reported accuracy, trained models for PASCAL VOC 2012 dataset. To train these models on your data, you will have to write a dataloader for your dataset. Models for Object Detection will be released soon.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

pytorch_tabular - A standard framework for modelling Deep Learning Models for tabular data

  •    Python

It has been built on the shoulders of giants like PyTorch(obviously), and PyTorch Lightning. Although the installation includes PyTorch, the best and recommended way is to first install PyTorch from here, picking up the right CUDA version for your machine.

pytorch-meta - A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

  •    Python

A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning benchmarks, fully compatible with both torchvision and PyTorch's DataLoader. You can also install Torchmeta from source. This is recommended if you want to contribute to Torchmeta.

ml-workspace - 🛠 All-in-one web-based IDE specialized for machine learning and data science.

  •    Jupyter

The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (📖 Installation Guide).

grokking-pytorch - The Hitchiker's Guide to PyTorch


PyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

Pyro - Deep universal probabilistic programming with Python and PyTorch

  •    Python

Pyro is a universal probabilistic programming language (PPL) written in Python and supported by PyTorch on the backend. Pyro enables flexible and expressive deep probabilistic modeling, unifying the best of modern deep learning and Bayesian modeling.

autogluon - AutoGluon: AutoML for Text, Image, and Tabular Data

  •    Python

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data. Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

video-classification-3d-cnn-pytorch - Video classification tools using 3D ResNet

  •    Python

This is a pytorch code for video (action) classification using 3D ResNet trained by this code. The 3D ResNet is trained on the Kinetics dataset, which includes 400 action classes. This code uses videos as inputs and outputs class names and predicted class scores for each 16 frames in the score mode. In the feature mode, this code outputs features of 512 dims (after global average pooling) for each 16 frames. Torch (Lua) version of this code is available here.

XLearning - AI on Hadoop

  •    Java

XLearning is a convenient and efficient scheduling platform combined with the big data and artificial intelligence, support for a variety of machine learning, deep learning frameworks. XLearning is running on the Hadoop Yarn and has integrated deep learning frameworks such as TensorFlow, MXNet, Caffe, Theano, PyTorch, Keras, XGBoost. XLearning has the satisfactory scalability and compatibility.Besides the distributed mode of TensorFlow and MXNet frameworks, XLearning supports the standalone mode of all deep learning frameworks such as Caffe, Theano, PyTorch. Moreover, XLearning allows the custom versions and multi-version of frameworks flexibly.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.