ytk-learn - Ytk-learn is a distributed machine learning library which implements most of popular machine learning algorithms(GBDT, GBRT, Mixture Logistic Regression, Gradient Boosting Soft Tree, Factorization Machines, Field-aware Factorization Machines, Logistic Regression, Softmax)

  •        32

Ytk-learn is a distributed machine learning library which implements most of popular machine learning algorithms





Related Projects

xgboost - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more

  •    C++

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

LightGBM - A fast, distributed, high performance gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks

  •    C++

For more details, please refer to Features.Experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

paracel - Distributed training framework with parameter server

  •    C++

Paracel is a distributed computational framework, designed for many machine learning problems: Logistic Regression, SVD, Matrix Factorization(BFGS, sgd, als, cg), LDA, Lasso... Firstly, paracel splits both massive dataset and massive parameter space. Unlike Mapreduce-Like Systems, paracel offers a simple communication model, allowing you to work with a global and distributed key-value storage, which is called parameter server.

fastFM - fastFM: A Library for Factorization Machines

  •    Python

The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citations of the software. If you publish scientific articles using fastFM, please cite the following article (bibtex entry citation.bib). This repository allows you to use Factorization Machines in Python (2.7 & 3.x) with the well known scikit-learn API. All performance critical code as been written in C and wrapped with Cython. fastFM provides stochastic gradient descent (SGD) and coordinate descent (CD) optimization routines as well as Markov Chain Monte Carlo (MCMC) for Bayesian inference. The solvers can be used for regression, classification and ranking problems. Detailed usage instructions can be found in the online documentation and on arXiv.

TensorFlowOnSpark - TensorFlowOnSpark brings TensorFlow programs onto Apache Spark clusters

  •    Python

TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from deep learning framework TensorFlow and big-data frameworks Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers.TensorFlowOnSpark was developed by Yahoo for large-scale distributed deep learning on our Hadoop clusters in Yahoo's private cloud.

dist-keras - Distributed Deep Learning, with a focus on distributed training, using Keras and Apache Spark

  •    Python

Distributed Deep Learning with Apache Spark and Keras. Distributed Keras is a distributed deep learning framework built op top of Apache Spark and Keras, with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in such a way that a new distributed optimizer could be implemented with ease, thus enabling a person to focus on research. Several distributed methods are supported, such as, but not restricted to, the training of ensembles and models using data parallel methods.

python-machine-learning-book - The "Python Machine Learning (1st edition)" book code repository and info resource

  •    Jupyter

This GitHub repository contains the code examples of the 1st Edition of Python Machine Learning book. If you are looking for the code examples of the 2nd Edition, please refer to this repository instead. What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning ... from theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano.

ml-ease - ADMM based large scale logistic regression

  •    Java

The open-source project that does large-scale machine learning including logistic regression, matrix factorization etc.

TensorFlow-Book - Accompanying source code for Machine Learning with TensorFlow

  •    Jupyter

This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

xlearn - High performance, easy-to-use, and scalable ML package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and command line interface

  •    C++

xLearn is a high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data, which is very common in Internet services such as online advertisement and recommender systems in recent years. If you are the user of liblinear, libfm, or libffm, now xLearn is your another better choice. xLearn is developed with high-performance C++ code with careful design and optimizations. Our system is designed to maximize CPU and memory utilization, provide cache-aware computation, and support lock-free learning. By combining these insights, xLearn is 5x-13x faster compared to similar systems.

MMLSpark - Microsoft Machine Learning for Apache Spark

  •    Scala

MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

machine_learning_basics - Plain python implementations of basic machine learning algorithms

  •    Jupyter

This repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

Coursera-Machine-Learning - Coursera Machine Learning - Python code

  •    Jupyter

This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignments in the course you are instructed to create complete, stand-alone Octave/MATLAB implementations of certain algorithms (Linear and Logistic Regression for example). The rest of the assignments depend on additional code provided by the course authors. For most of the code in this repository I have instead used existing Python implementations like Scikit-learn.

Oryx 2 - Lambda architecture on Apache Spark, Apache Kafka for real-time large scale machine learning

  •    Java

The Oryx open source project provides infrastructure for lambda-architecture applications on top of Spark, Spark Streaming and Kafka. On this, it provides further support for real-time, large scale machine learning, and end-to-end applications of this support for common machine learning use cases, like recommendations, clustering, classification and regression.