- 42

NOTE: THE CODE IS UNDER DEVELOPMENT, PLEASE ALWAYS PULL THE LATEST VERSION FROM HERE. In recent years, sequence-to-sequence (seq2seq) models are used in a variety of tasks from machine translation, headline generation, text summarization, speech to text, to image caption generation. The underlying framework of all these models are usually a deep neural network which contains an encoder and decoder. The encoder processes the input data and a decoder receives the output of the encoder and generates the final output. Although simply using an encoder/decoder model would, most of the time, produce better result than traditional methods on the above-mentioned tasks, researchers proposed additional improvements over these sequence to sequence models, like using an attention-based model over the input, pointer-generation models, and self-attention models. However, all these seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently a completely fresh point of view emerged in solving these two problems in seq2seq models by using methods in Reinforcement Learning (RL). In these new researches, we try to look at the seq2seq problems from the RL point of view and we try to come up with a formulation that could combine the power of RL methods in decision-making and sequence to sequence models in remembering long memories. In this paper, we will summarize some of the most recent frameworks that combines concepts from RL world to the deep neural network area and explain how these two areas could benefit from each other in solving complex seq2seq tasks. In the end, we will provide insights on some of the problems of the current existing models and how we can improve them with better RL models. We also provide the source code for implementing most of the models that will be discussed in this paper on the complex task of abstractive text summarization.

https://arxiv.org/abs/1805.09461https://github.com/yaserkl/RLSeq2Seq

Tags | reinforcement-learning actor-critic policy-gradient abstractive-text-summarization pointer-generator nlp |

Implementation | Python |

License | MIT |

Platform | Windows Linux |

In these tutorials for reinforcement learning, it covers from the basic RL algorithms to advanced algorithms developed recent years. If you speak Chinese, visit 莫烦 Python or my Youtube channel for more.

reinforcement-learning tutorial q-learning sarsa sarsa-lambda deep-q-network a3c ddpg policy-gradient dqn double-dqn prioritized-replay dueling-dqn deep-deterministic-policy-gradient asynchronous-advantage-actor-critic actor-critic tensorflow-tutorials proximal-policy-optimization ppo machine-learningReinforcement Learning with Python will help you to master basic reinforcement learning algorithms to the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI and Tensorflow. You will then explore various RL algorithms and concepts such as the Markov Decision Processes, Monte-Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep learning, covering various deep learning algorithms. You will then explore deep reinforcement learning in depth, which is a combination of deep learning and reinforcement learning. You will master various deep reinforcement learning algorithms such as DQN, Double DQN. Dueling DQN, DRQN, A3C, DDPG, TRPO, and PPO. You will also learn about recent advancements in reinforcement learning such as imagination augmented agents, learn from human preference, DQfD, HER and many more.

reinforcement-learning deep-reinforcement-learning sarsa q-learning policy-gradients deep-q-network deep-learning-algorithms asynchronous-advantage-actor-critic deep-deterministic-policy-gradient deep-recurrent-q-network double-dqn dueling-dqn hindsight-experience-replay drqn trpo ppoNOTICE: Please use the next version, SLM-Lab. An experimentation framework for Reinforcement Learning using OpenAI Gym, Tensorflow, and Keras.

keras tensorflow openai experiment policy-gradient actor-critic ddpg deep-reinforcement-learning reinforcement-learning gym lab reinforcement learningModular Deep Reinforcement Learning framework in PyTorch. A multitask agent solving both OpenAI Cartpole-v0 and Unity Ball2D.

reinforcement-learning pytorch openai-gym framework research dqn artificial-intelligence policy-gradient actor-critic ppo a3c deep-rlThis repository contains the code and pdf of a series of blog post called "dissecting reinforcement learning" which I published on my blog mpatacchiola.io/blog. Moreover there are links to resources that can be useful for a reinforcement learning practitioner. If you have some good references which may be of interest please send me a pull request and I will integrate them in the README. The source code is contained in src with the name of the subfolders following the post number. In pdf there are the A3 documents of each post for offline reading. In images there are the raw svg file containing the images used in each post.

reinforcement-learning deep-reinforcement-learning markov-chain temporal-differencing-learning sarsa q-learning actor-critic multi-armed-bandit inverted-pendulum mountain-car drone-landing dissecting-reinforcement-learning genetic-algorithmChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. ChainerRL is tested with Python 2.7+ and 3.5.1+. For other requirements, see requirements.txt.

chainer reinforcement-learning deep-learning machine-learning dqn actor-criticDeep Reinforcement Learning Course is a free series of blog posts and videos 🆕 about Deep Reinforcement Learning, where we'll learn the main algorithms, and how to implement them with Tensorflow. 📜The articles explain the concept from the big picture to the mathematical details behind it.

deep-reinforcement-learning qlearning deep-learning tensorflow-tutorials tensorflow ppo a2c actor-critic deep-q-network deep-q-learningPython implementation of TextRank, based on the Mihalcea 2004 paper. The results produced by this implementation are intended more for use as feature vectors in machine learning, not as academic paper summaries.

textrank summarization natural-language-processing text-analytics nlp nlp-parsing machine-learning graph-algorithmsPyTorch0.4 implementation of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay

A hybrid CPU/GPU version of the Asynchronous Advantage Actor-Critic (A3C) algorithm, currently the state-of-the-art method in reinforcement learning for various gaming tasks. This CPU/GPU implementation, based on TensorFlow, achieves a significant speed up compared to a similar CPU implementation. Run sh _clean.sh first, and then sh _train.sh. The script _clean.sh cleans the checkpoints folder, which contains the network models saved during the training process, as well as removing results.txt, which is a log of the scores achieved during training.

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have updated this code for newer versions of Tensorflow and Python - see information below and Issues section. This repository contains code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks. For an intuitive overview of the paper, read the blog post.

TextTeaser is an automatic summarization algorithm that combines the power of natural language processing and machine learning to produce good results. It can provide provide a gist of an article, Better previews in news readers.

summarization nlp text-processing text-analysis summaryIt is still a problem to implement Batch Normalization on the critic network. However the actor network works well with Batch Normalization. Some Mujoco environments are still unsolved on OpenAI Gym.

In this tutorial, we'll be creating artificially intelligent agents that learn from interacting with their environment, gathering experience, and a system of rewards with deep reinforcement learning (deep RL). Using end-to-end neural networks that translate raw pixels into actions, RL-trained agents are capable of exhibiting intuitive behaviors and performing complex tasks. Ultimately, our aim will be to train reinforcement learning agents from virtual robotic simulation in 3D and transfer the agent to a real-world robot. Reinforcement learners choose the best action for the agent to perform based on environmental state (like camera inputs) and rewards that provide feedback to the agent about it's performance. Reinforcement learning can learn to behave optimally in it's environment given a policy, or task - like obtaining the reward.

This is an implementation of sequence-to-sequence model using a bidirectional GRU encoder and a GRU decoder. This project aims to help people start working on Abstractive Short Text Summarization immediately. And hopefully, it may also work on machine translation tasks. Please check harvardnlp/sent-summary.

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.

text-analytics text-summarization text-classification natural-language natural-language-processing clustering sentiment semantic sentiment-analysis nltk stanford-nlp spacy pattern scikit-learn gensimGensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

gensim topic-modeling information-retrieval machine-learning natural-language-processing nlp data-science data-mining word2vec word-embeddings text-summarization neural-network document-similarity word-similarity fasttextThis is a Tensorflow + Keras implementation of asyncronous 1-step Q learning as described in "Asynchronous Methods for Deep Reinforcement Learning". Since we're using multiple actor-learner threads to stabilize learning in place of experience replay (which is super memory intensive), this runs comfortably on a macbook w/ 4g of ram.

This project provides optimized infrastructure for reinforcement learning. It extends the OpenAI gym interface to multiple parallel environments and allows agents to be implemented in TensorFlow and perform batched computation. As a starting point, we provide BatchPPO, an optimized implementation of Proximal Policy Optimization. The algorithm to use is defined in the configuration and pendulum started here uses the included PPO implementation. Check out more pre-defined configurations in agents/scripts/configs.py.

reinforcement-learning tensorflow multi-processing artificial-intelligence vectorized-computation controlSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnn
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**