TensorFlowOnSpark - TensorFlowOnSpark brings TensorFlow programs onto Apache Spark clusters

  •        104

TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from deep learning framework TensorFlow and big-data frameworks Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers.TensorFlowOnSpark was developed by Yahoo for large-scale distributed deep learning on our Hadoop clusters in Yahoo's private cloud.

https://github.com/yahoo/TensorFlowOnSpark

Tags
Implementation
License
Platform

   




Related Projects

Vespa - Yahoo's big data serving engine

  •    Java

Vespa is an engine for low-latency computation over large data sets. It stores and indexes your data such that queries, selection and processing over the data can be performed at serving time. Vespa is serving platform for Yahoo.com, Yahoo News, Yahoo Sports, Yahoo Finance, Yahoo Gemini, Flickr.

dist-keras - Distributed Deep Learning, with a focus on distributed training, using Keras and Apache Spark

  •    Python

Distributed Deep Learning with Apache Spark and Keras. Distributed Keras is a distributed deep learning framework built op top of Apache Spark and Keras, with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in such a way that a new distributed optimizer could be implemented with ease, thus enabling a person to focus on research. Several distributed methods are supported, such as, but not restricted to, the training of ensembles and models using data parallel methods.

mleap - MLeap: Deploy Spark Pipelines to Production

  •    Scala

Deploying machine learning data pipelines and algorithms should not be a time-consuming or difficult task. MLeap allows data scientists and engineers to deploy machine learning pipelines from Spark and Scikit-learn to a portable format and execution engine. Documentation is available at mleap-docs.combust.ml.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.


TensorFlow-Book - Accompanying source code for Machine Learning with TensorFlow

  •    Jupyter

This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

MMLSpark - Microsoft Machine Learning for Apache Spark

  •    Scala

MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

keystone - Simplifying robust end-to-end machine learning on Apache Spark.

  •    Scala

The biggest, baddest pipelines around. To run KeystoneML pipelines on large datasets you will need a Spark cluster. KeystoneML pipelines run on the cluster using spark-submit.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

Oryx 2 - Lambda architecture on Apache Spark, Apache Kafka for real-time large scale machine learning

  •    Java

The Oryx open source project provides infrastructure for lambda-architecture applications on top of Spark, Spark Streaming and Kafka. On this, it provides further support for real-time, large scale machine learning, and end-to-end applications of this support for common machine learning use cases, like recommendations, clustering, classification and regression.

sparklyr - R interface for Apache Spark

  •    R

If you use the RStudio IDE, you should also download the latest preview release of the IDE which includes several enhancements for interacting with Spark (see the RStudio IDE section below for more details). The returned Spark connection (sc) provides a remote dplyr data source to the Spark cluster.

TransmogrifAI - TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Spark with minimal hand tuning

  •    Scala

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Spark. It was developed with a focus on accelerating machine learning developer productivity through machine learning automation, and an API that enforces compile-time type-safety, modularity, and reuse. Through automation, it achieves accuracies close to hand-tuned models with almost 100x reduction in time. Skip to Quick Start and Documentation.

tensorflow_cookbook - Code for Tensorflow Machine Learning Cookbook

  •    Jupyter

This chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.

node-tensorflow - Node.js + TensorFlow

  •    Javascript

TensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.