- 28

It is a Tiny implement of Gradient Boosting tree, based on XGBoost's scoring function and SLIQ's efficient tree building algorithm. TGBoost build the tree in a level-wise way as in SLIQ (by constructing Attribute list and Class list). Currently, TGBoost support parallel learning on single machine, the speed and memory consumption are comparable to XGBoost. Handle missing value, XGBoost learn a direction for those with missing value, the direction is left or right. TGBoost take a different approach: it enumerate missing value go to left child, right child and missing value child, then choose the best one. So TGBoost use Ternary Tree.

https://github.com/wepe/tgboostTags | boosted-trees gradient-boosting-machine machine-learning xgboost sliq |

Implementation | Java |

License | MIT |

Platform | OS-Independent |

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

machine-learning interpretability gradient-boosting blackbox scikit-learn xai interpretmlXGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

gbdt gbrt gbm distributed-systems xgboost gradient-boosting histogramCatBoost is a machine learning method based on gradient boosting over decision trees. All CatBoost documentation is available here.

machine-learning decision-trees gradient-boosting gbm gbdt r kaggle gpu-computing catboost tutorial categorical-features distributed gpu coreml opensource data-science big-dataConsider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

machine-learning data-science automl automation scikit-learn hyperparameter-optimization model-selection parameter-tuning automated-machine-learning random-forest gradient-boosting feature-engineering xgboost genetic-programmingThis project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

machine-learning data-science r gradient-boosting-machine random-forest deep-learning xgboost h2o sparkauto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

machine-learning data-science automated-machine-learning gradient-boosting scikit-learn machine-learning-pipelines machine-learning-library production-ready automl lightgbm analytics feature-engineering hyperparameter-optimization deep-learning xgboost keras deeplearning tensorflow artificial-intelligenceRumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceInstructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

machine-learning deep-learning random-forest gradient-boosting-machine tutorial data-science ensemble-learning rYtk-learn is a distributed machine learning library which implements most of popular machine learning algorithms

machine-learning distributed gbm gbdt logistic-regression factorization-machines spark hadoopFor more details, please refer to Features.Experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, the experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

gbdt gbm machine-learning data-mining kaggle efficiency distributed lightgbm gbrtPython codes for common Machine Learning Algorithms

linear-regression polynomial-regression logistic-regression decision-trees random-forest svm svr knn-classification naive-bayes-classifier kmeans-clustering hierarchical-clustering pca lda xgboost-algorithmCode for tuning hyperparams with Hyperband, adapted from Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. Use defs.meta/defs_regression.meta to try many models in one Hyperband run. This is an automatic alternative to constructing search spaces with multiple models (like defs.rf_xt, or defs.polylearn_fm_pn) by hand.

hyperparameters hyperparameter-optimization hyperparameter-tuning gradient-boosting-classifier gradient-boosting machine-learningI just built out v2 of this project that now gives you analytics info from your models, and is production-ready. machineJS is an amazing research project that clearly proved there's a hunger for automated machine learning. auto_ml tackles this exact same goal, but with more features, cleaner code, and the ability to be copy/pasted into production.

machine-learning data-science machine-learning-library machine-learning-algorithms ml data-scientists javascript-library scikit-learn kaggle numerai automated-machine-learning automl auto-ml neuralnet neural-network algorithms random-forest svm naive-bayes bagging optimization brainjs date-night sklearn ensemble data-formatting js xgboost scikit-neuralnetwork knn k-nearest-neighbors gridsearch gridsearchcv grid-search randomizedsearchcv preprocessing data-formatter kaggle-competitionGorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

machine-learning artificial-intelligence neural-network computation-graph differentiation gradient-descent gorgonia deep-learning deeplearning deep-neural-networks automatic-differentiation symbolic-differentiation go-libraryGorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow. The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

machine-learning artificial-intelligence neural-network computation-graph differentiation gradient-descent gorgonia deep-learning deeplearning deep-neural-networks automatic-differentiation symbolic-differentiationThis repo is a collection of scripts we use at Xeneta to qualify sales leads with machine learning. Read more about this project in the Medium article Boosting Sales With Machine Learning. We'd love to see more algorithms on the leaderboard, so send us a pull request once you've implemented one.

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.

machine-learning interpretability data-science xai visual-explanations imlThis project aims to make high frequency bitcoin price predictions from market microstructure data. The dataset is a series of one second snapshots of open buy and sell orders on the Bitfinex exchange, combined with a record of executed transactions. Data collection began 08/20/2015.A number of engineered features are used to train a Gradient Boosting model, and a theoretical trading strategy is simulated on historical and live data.

bitcoinThis software package provides a multi-core implementation of a simplified Regularized Greedy Forest (RGF) described in [RGF]. Please cite the paper if you find the software useful. RGF is a machine learning method for building decision forests that have been used to win some kaggle competitions. In our experience it works better than gradient boosting on many relatively large datasets.

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

machine-learning framework c-sharp nuget visual-studio statistics unity3d neural-network support-vector-machines computer-vision image-processing ffmpeg
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**