- 335

Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

https://github.com/wagamamaz/tensorflow-tutorial

While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

tensorlayer tensorflow deep-learning machine-learning data-science neural-network reinforcement-learning neural-networks tensorflow-tutorials tensorflow-models computer-vision tensorflow-framework tensorflow-library tflearn keras tensorboard nlp natural-language-processing lasagne tensorflow-experimentsDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningThe goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

deep-learning tensorflow reinforcement-learning machine-learning pattern-recognition object-detection convolutional-neural-networks recurrent-neural-networks neural-networkTensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

tensorlayer deep-learning tensorflow machine-learning data-science neural-network reinforcement-learning artificial-intelligence gan a3c tensorflow-tutorials dqn object-detection chatbot tensorflow-tutorial imagenet googleA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Climate / Energy, Automotives, Retail, Pharma, Medicine, Healthcare, Policy, Ethics and more.

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkHow simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want. The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks".

keras cnn cifar10 machine-learning tensorflow deep-learning neural-network imagenet image-processing nlpA generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

image-detection machine-learning deep-learning deep-neural-networks convolutional-neural-networks tensorflowThe Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

neural-machine-translation tensorflow nlp sequence-to-sequence neural-networks nmt machine-translation mt deep-learning image-captioning encoder-decoder gpuCompared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognitionKeras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

deep-learning tensorflow theano neural-networks machine-learning data-science"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networkskeras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

keras tensorflow theano reinforcement-learning neural-networks machine-learningRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchTrending deep learning Github repositories can be found here. Hint: This will be updated regularly.

deep-learning deep-neural-networks deep-reinforcement-learning convolutional-neural-networks recurrent-neural-networks stargazers-count artificial-neural-networks artificial-intelligence machine-learning top-repositoriesTFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

tflearn tensorflow neural-network deep-learning machine-learning data-scienceDeep learning is one of the most popular domains in the artificial intelligence (AI) space, which allows you to develop multi-layered models of varying complexities. This book is designed to help you grasp things, from basic deep learning algorithms to the more advanced algorithms. The book is designed in a way that first you will understand the algorithm intuitively, once you have a basic understanding of the algorithms, then you will master the underlying math behind them effortlessly and then you will learn how to implement them using TensorFlow step by step. The book covers almost all the state of the art deep learning algorithms. First, you will get a good understanding of the fundamentals of neural networks and several variants of gradient descent algorithms. Later, you will explore RNN, Bidirectional RNN, LSTM, GRU, seq2seq, CNN, capsule nets and more. Then, you will master GAN and various types of GANs and several different autoencoders.

tensorflow word-embeddings gru autoencoder gans doc2vec skip-thoughts adagrad cyclegan deep-learning-mathematics capsule-network few-shot-learning quick-thought deep-learning-scratch nadam deep-learning-math lstm-math cnn-math rnn-derivation contractive-autonencodersBender is an abstraction layer over MetalPerformanceShaders useful for working with neural networks. Bender is an abstraction layer over MetalPerformanceShaders which is used to work with neural networks. It is of growing interest in the AI environment to execute neural networks on mobile devices even if the training process has been done previously. We want to make it easier for everyone to execute pretrained networks on iOS.

machine-learning neural-networks metal apple iphone ios convolutional-neural-networks deep-learning deep-neural-networks residual-networksA simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributing in tensorflow projects here's a tensorflow project template that combines simplcity, best practice for folder structure and good OOP design. The main idea is that there's much stuff you do every time you start your tensorflow project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new tensorflow project. You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

tesnorflow software-engineering oop deep-learning neural-network convolutional-neural-networks tensorflow-tutorials deep-learning-tutorial best-practices tensorflow templateRLzoo is a collection of the most practical reinforcement learning algorithms, frameworks and applications. It is implemented with Tensorflow 2.0 and API of neural network layers in TensorLayer 2, to provide a hands-on fast-developing approach for reinforcement learning practices and benchmarks. It supports basic toy-tests like OpenAI Gym and DeepMind Control Suite with very simple configurations. Moreover, RLzoo supports robot learning benchmark environment RLBench based on Vrep/Pyrep simulator. Other large-scale distributed training framework for more realistic scenarios with Unity 3D, Mujoco, Bullet Physics, etc, will be supported in the future. A Springer textbook is also provided, you can get the free PDF if your institute has Springer license. Different from RLzoo for simple usage with high-level APIs, we also have a RL tutorial that aims to make the reinforcement learning tutorial simple, transparent and straight-forward with low-level APIs, as this would not only benefits new learners of reinforcement learning, but also provide convenience for senior researchers to testify their new ideas quickly.

reinforcement-learning deep-learning tensorflow deep-reinforcement-learning tensorlayer reinforcement-learning-practicesTensorFlow implementation of Deep Convolutional Generative Adversarial Networks, Variational Autoencoder (also Deep and Convolutional) and DRAW: A Recurrent Neural Network For Image Generation. Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.

tensorflow draw recurrent-neural-networks gan vae
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**