xviz - A protocol for real-time transfer and visualization of autonomy data

  •        69

XVIZ is a protocol for real-time transfer and visualization of autonomy data. Learn more in the docs and specification. You need Node.js and yarn to run the examples.

http://xviz.io
https://github.com/uber/xviz

Dependencies:

protobufjs : ^6.8.8

Tags
Implementation
License
Platform

   




Related Projects

self-driving-car - The Udacity open source self-driving car project

  •    Jupyter

At Udacity, we believe in democratizing education. How can we provide opportunity to everyone on the planet? We also believe in teaching really amazing and useful subject matter. When we decided to build the Self-Driving Car Nanodegree program, to teach the world to build autonomous vehicles, we instantly knew we had to tackle our own self-driving car too. You can read more about our plans for this project.

streetscape.gl - Visualization framework for autonomy and robotics data encoded in XVIZ

  •    Javascript

streetscape.gl is a toolkit for visualizing autonomous and robotics data in the XVIZ protocol. It is built on top of React and Uber’s WebGL-powered visualization frameworks. You need Node.js and yarn to run the example app.

self-driving-toy-car - A self driving toy car using end-to-end learning

  •    Jupyter

To make a lane follower based on a standard RC car using Raspberry Pi and a camera. The software is a simple Convolutional Network, which takes in the image fetched from the camera and outputs the steering angle. During data collection, we will simply hook the steering PWM of the car to pin GPIO17. The script raspberry_pi/collect_data.py will record the values of steering PWM and the associated images. The data of each trial are collectively stored in driving_trial_*. The trial folders are automatically numbered.

donkey - self driving car

  •    Python

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions. After building a Donkey2 you can turn on your car and go to http://localhost:8887 to drive.

self-driving-car-sim - A self-driving car simulator built with Unity

  •    CSharp

This simulator was built for Udacity's Self-Driving Car Nanodegree, to teach students how to train cars how to navigate road courses using deep learning. See more project details here. All the assets in this repository require Unity. Please follow the instructions below for the full setup.


CarND-Path-Planning-Project - Create a path planner that is able to navigate a car safely around a virtual highway

  •    C++

You can download the Term3 Simulator which contains the Path Planning Project from the [releases tab (https://github.com/udacity/self-driving-car-sim/releases/tag/T3_v1.2). In this project your goal is to safely navigate around a virtual highway with other traffic that is driving +-10 MPH of the 50 MPH speed limit. You will be provided the car's localization and sensor fusion data, there is also a sparse map list of waypoints around the highway. The car should try to go as close as possible to the 50 MPH speed limit, which means passing slower traffic when possible, note that other cars will try to change lanes too. The car should avoid hitting other cars at all cost as well as driving inside of the marked road lanes at all times, unless going from one lane to another. The car should be able to make one complete loop around the 6946m highway. Since the car is trying to go 50 MPH, it should take a little over 5 minutes to complete 1 loop. Also the car should not experience total acceleration over 10 m/s^2 and jerk that is greater than 10 m/s^3.

How_to_simulate_a_self_driving_car - This is the code for "How to Simulate a Self-Driving Car" by Siraj Raval on Youtube

  •    Python

This is the code for this video on Youtube by Siraj Raval. We're going to use Udacity's self driving car simulator as a testbed for training an autonomous car. You need a anaconda or miniconda to use the environment setting.

uber-cli - 🚗Uber, at your fingertips

  •    Javascript

Clearly, I'm a lazy person (just look at what this tool does - it helps me figure out if I should order a car to pick me up and drive me to where I want to go). That being said, as a lazy person it pains me everytime open my phone, open the Uber app, type my destination, and see the estimated price, only for my inner, responsible, cost-cutting, fiduciary-self to end up taking the bus all the way home.

CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

  •    Jupyter

When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are act as our constant reference for where to steer the vehicle. Naturally, one of the first things we would like to do in developing a self-driving car is to automatically detect lane lines using an algorithm. In this project you will detect lane lines in images using Python and OpenCV. OpenCV means "Open-Source Computer Vision", which is a package that has many useful tools for analyzing images.

CarND-Capstone

  •    CMake

This is the project repo for the final project of the Udacity Self-Driving Car Nanodegree: Programming a Real Self-Driving Car. For more information about the project, see the project introduction here. Please use one of the two installation options, either native or docker installation.

carla - Open-source simulator for autonomous driving research.

  •    C++

CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. If you want to benchmark your model in the same conditions as in our CoRL’17 paper, check out Benchmarking.

LightNet - LightNet: Light-weight Networks for Semantic Image Segmentation (Cityscapes and Mapillary Vistas Dataset)

  •    Python

This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.

apollo - An open autonomous driving platform

  •    C++

Apollo is a high performance, flexible architecture which accelerates the development, testing, and deployment of Autonomous Vehicles. For business and partnership, please visit our website.

UberCarAnimation - A demo app showing movement of car on map like in Uber.

  •    Java

A demo application which demonstrates movement of car on map developed after inspiration from Uber. The application uses Google Maps Api Key and Google Map Directions key. Get these api key on google developers console after enabling them for your project. Replace your google maps directions api key in strings.xml and google maps key in google_maps_api.xml. For convenience a TODO has been added there just follow them.

ORB_SLAM - A Versatile and Accurate Monocular SLAM

  •    C++

ORB-SLAM is a versatile and accurate Monocular SLAM solution able to compute in real-time the camera trajectory and a sparse 3D reconstruction of the scene in a wide variety of environments, ranging from small hand-held sequences to a car driven around several city blocks. It is able to close large loops and perform global relocalisation in real-time and from wide baselines. [1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF.

CarDriving

  •    Java

The very basic of a java 3D car driving game, freely expandable including a built-in basic 3D object editor and a more complex road+objects editor. Source code available,no OpenGL.

AirSim - Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research

  •    C++

AirSim is a simulator for drones (and soon other vehicles) built on Unreal Engine. It is open-source, cross platform and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped in to any Unreal environment you want.

CarND-Vehicle-Detection - Vehicle detection using YOLO in Keras runs at 21FPS

  •    Jupyter

This is a project for Udacity self-driving car Nanodegree program. The aim of this project is to detect the vehicles in a dash camera video. The implementation of the project is in the file vehicle_detection.ipynb. This implementation is able to achieve 21FPS without batching processing. The final video output is here. In this README, each step in the pipeline will be explained in details.

CarND-Extended-Kalman-Filter-Project - Self-Driving Car Nanodegree Program Starter Code for the Extended Kalman Filter Project

  •    C++

In this project you will utilize a kalman filter to estimate the state of a moving object of interest with noisy lidar and radar measurements. Passing the project requires obtaining RMSE values that are lower than the tolerance outlined in the project rubric. This repository includes two files that can be used to set up and install uWebSocketIO for either Linux or Mac systems. For windows you can use either Docker, VMware, or even Windows 10 Bash on Ubuntu to install uWebSocketIO. Please see this concept in the classroom for the required version and installation scripts.

CarND-Kidnapped-Vehicle-Project

  •    C++

This repository contains all the code needed to complete the final project for the Localization course in Udacity's Self-Driving Car Nanodegree. Your robot has been kidnapped and transported to a new location! Luckily it has a map of this location, a (noisy) GPS estimate of its initial location, and lots of (noisy) sensor and control data.