Calliope - Bridge between Cassandra and Spark framework

  •        1772

Calliope provides a bridge between Cassandra and Spark framework allowing you to create those magical, realtime bigdata apps with ease. It is a library providing an interface to consume data from Cassandra to spark and store RDDs from Spark to Cassandra.

http://tuplejump.github.io/calliope/
https://github.com/tuplejump/calliope-release

Tags
Implementation
License
Platform

   




Related Projects

spark-cassandra-connector - DataStax Spark Cassandra Connector

  •    Scala

Lightning-fast cluster computing with Apache Spark™ and Apache Cassandra®.This library lets you expose Cassandra tables as Spark RDDs, write Spark RDDs to Cassandra tables, and execute arbitrary CQL queries in your Spark applications.

snappydata - SnappyData - The Spark Database. Stream, Transact, Analyze, Predict in one cluster

  •    Scala

Apache Spark is a general purpose parallel computational engine for analytics at scale. At its core, it has a batch design center and is capable of working with disparate data sources. While this provides rich unified access to data, this can also be quite inefficient and expensive. Analytic processing requires massive data sets to be repeatedly copied and data to be reformatted to suit Spark. In many cases, it ultimately fails to deliver the promise of interactive analytic performance. For instance, each time an aggregation is run on a large Cassandra table, it necessitates streaming the entire table into Spark to do the aggregation. Caching within Spark is immutable and results in stale insight. At SnappyData, we take a very different approach. SnappyData fuses a low latency, highly available in-memory transactional database (GemFireXD) into Spark with shared memory management and optimizations. Data in the highly available in-memory store is laid out using the same columnar format as Spark (Tungsten). All query engine operators are significantly more optimized through better vectorization and code generation. The net effect is, an order of magnitude performance improvement when compared to native Spark caching, and more than two orders of magnitude better Spark performance when working with external data sources.

Gimel - PayPal's Big Data Processing Framework

  •    Scala

Gimel provides unified Data API to access data from any storage like HDFS, GS, Alluxio, Hbase, Aerospike, BigQuery, Druid, Elastic, Teradata, Oracle, MySQL, etc.

GeoMesa - Suite of tools for working with big geo-spatial data in a distributed fashion

  •    Scala

GeoMesa is an open-source, distributed, spatio-temporal database built on a number of distributed cloud data storage systems, including Accumulo, HBase, Cassandra, and Kafka. Leveraging a highly parallelized indexing strategy, GeoMesa aims to provide as much of the spatial querying and data manipulation to Accumulo as PostGIS does to Postgres.


spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

  •    Jupyter

This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens dataset to build a movie recommender using collaborative filtering with Spark's Alternating Least Saqures implementation. It is organised in two parts. The first one is about getting and parsing movies and ratings data into Spark RDDs. The second is about building and using the recommender and persisting it for later use in our on-line recommender system. This tutorial can be used independently to build a movie recommender model based on the MovieLens dataset. Most of the code in the first part, about how to use ALS with the public MovieLens dataset, comes from my solution to one of the exercises proposed in the CS100.1x Introduction to Big Data with Apache Spark by Anthony D. Joseph on edX, that is also publicly available since 2014 at Spark Summit. Starting from there, I've added with minor modifications to use a larger dataset, then code about how to store and reload the model for later use, and finally a web service using Flask.

spark-py-notebooks - Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

  •    Jupyter

This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, from basic to advanced, by using the Python language. If Python is not your language, and it is R, you may want to have a look at our R on Apache Spark (SparkR) notebooks instead. Additionally, if your are interested in being introduced to some basic Data Science Engineering, you might find these series of tutorials interesting. There we explain different concepts and applications using Python and R.

spark-notebook - Interactive and Reactive Data Science using Scala and Spark.

  •    Javascript

The Spark Notebook is the open source notebook aimed at enterprise environments, providing Data Scientists and Data Engineers with an interactive web-based editor that can combine Scala code, SQL queries, Markup and JavaScript in a collaborative manner to explore, analyse and learn from massive data sets. The Spark Notebook allows performing reproducible analysis with Scala, Apache Spark and the Big Data ecosystem.

magellan - Geo Spatial Data Analytics on Spark

  •    Scala

Magellan is a distributed execution engine for geospatial analytics on big data. It is implemented on top of Apache Spark and deeply leverages modern database techniques like efficient data layout, code generation and query optimization in order to optimize geospatial queries. The application developer writes standard sql or data frame queries to evaluate geometric expressions while the execution engine takes care of efficiently laying data out in memory during query processing, picking the right query plan, optimizing the query execution with cheap and efficient spatial indices while presenting a declarative abstraction to the developer.

Optimus - :truck: Agile Data Science Workflows made easy with Python and Spark.

  •    Python

Optimus is the missing framework to profile, clean, process and do ML in a distributed fashion using Apache Spark(PySpark). You can go to the 10 minutes to Optimus notebook where you can find the basic to start working.

delta - An open-source storage layer that brings scalable, ACID transactions to Apache Spark™ and big data workloads

  •    Scala

Delta Lake is a storage layer that brings scalable, ACID transactions to Apache Spark and other big-data engines. See the Delta Lake Documentation for details.

Stream-Framework - Stream Framework is a Python library, which allows you to build news feed, activity streams and notification systems using Cassandra and/or Redis

  •    Python

Stream Framework is a python library which allows you to build activity streams & newsfeeds using Cassandra and/or Redis. If you're not using python have a look at Stream, which supports Node, Ruby, PHP, Python, Go, Scala, Java and REST. Stream Framework's authors also offer a web service for building scalable newsfeeds & activity streams at Stream. It allows you to create your feeds by talking to a beautiful and easy to use REST API. There are clients available for Node, Ruby, PHP, Python, Go, Scala and Java. The Get Started page explains the API & concept in a few clicks. It's a lot easier to use, free up to 3 million feed updates and saves you the hassle of maintaining Cassandra, Redis, Faye, RabbitMQ and Celery workers.

Spark - Fast Cluster Computing

  •    Scala

Apache Spark is an open source cluster computing system that aims to make data analytics fast — both fast to run and fast to write. To run programs faster, Spark offers a general execution model that can optimize arbitrary operator graphs, and supports in-memory computing, which lets it query data faster than disk-based engines like Hadoop.

snappydata - Project SnappyData - memory optimized analytics database, based on Apache Spark™ and Apache Geode™

  •    Scala

SnappyData (aka TIBCO ComputeDB) is a distributed, in-memory optimized analytics database. SnappyData delivers high throughput, low latency, and high concurrency for unified analytics workload. By fusing an in-memory hybrid database inside Apache Spark, it provides analytic query processing, mutability/transactions, access to virtually all big data sources and stream processing all in one unified cluster. One common use case for SnappyData is to provide analytics at interactive speeds over large volumes of data with minimal or no pre-processing of the dataset. For instance, there is no need to often pre-aggregate/reduce or generate cubes over your large data sets for ad-hoc visual analytics. This is made possible by smartly managing data in-memory, dynamically generating code using vectorization optimizations and maximizing the potential of modern multi-core CPUs. SnappyData enables complex processing on large data sets in sub-second timeframes.

akka-analytics - Large-scale event processing with Akka Persistence and Apache Spark

  •    Scala

Events for a given persistenceId are partitioned across nodes in the Cassandra cluster where the partition is represented by the partition field in the key. The eventTable() method returns an RDD in which events with the same persistenceId - partition combination (= cluster partition) are ordered by increasing sequenceNr but the ordering across cluster partitions is not defined. If needed the RDD can be sorted with sortByKey() by persistenceId, partition and sequenceNr in that order of significance. Btw, the default size of a cluster partition in the Cassandra journal is 5000000 events (see akka-persistence-cassandra). The stream of events (written by all persistent actors) is partially ordered i.e. events with the same persistenceId are ordered by sequenceNr whereas the ordering of events with different persistenceId is not defined. Details about Kafka consumer params are described here.

neo4j-mazerunner - Mazerunner extends a Neo4j graph database to run scheduled big data graph compute algorithms at scale with HDFS and Apache Spark

  •    Java

This docker image adds high-performance graph analytics to a Neo4j graph database. This image deploys a container with Apache Spark and uses GraphX to perform ETL graph analysis on subgraphs exported from Neo4j. The results of the analysis are applied back to the data in the Neo4j database. The Neo4j Mazerunner service in this image is a unmanaged extension that adds a REST API endpoint to Neo4j for submitting graph analysis jobs to Apache Spark GraphX. The results of the analysis are applied back to the nodes in Neo4j as property values, making the results queryable using Cypher.

Elassandra - Elasticsearch + Apache Cassandra

  •    Java

Elassandra is a fork of Elasticsearch modified to run as a plugin for Apache Cassandra in a scalable and resilient peer-to-peer architecture. Elasticsearch code is embedded in Cassanda nodes providing advanced search features on Cassandra tables and Cassandra serve as an Elasticsearch data and configuration store. It supports Cassandra vnodes and scales horizontally by adding more nodes.

wirbelsturm - Wirbelsturm is a Vagrant and Puppet based tool to perform 1-click local and remote deployments, with a focus on big data related infrastructure

  •    Shell

Wirbelsturm is a Vagrant and Puppet based tool to perform 1-click local and remote deployments, with a focus on big data related infrastructure. Wirbelsturm's goal is to make tasks such as "I want to deploy a multi-node Storm cluster" simple, easy, and fun.

spark - .NET for Apache® Spark™ makes Apache Spark™ easily accessible to .NET developers.

  •    CSharp

.NET for Apache Spark provides high performance APIs for using Apache Spark from C# and F#. With these .NET APIs, you can access the most popular Dataframe and SparkSQL aspects of Apache Spark, for working with structured data, and Spark Structured Streaming, for working with streaming data. .NET for Apache Spark is compliant with .NET Standard - a formal specification of .NET APIs that are common across .NET implementations. This means you can use .NET for Apache Spark anywhere you write .NET code allowing you to reuse all the knowledge, skills, code, and libraries you already have as a .NET developer.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.