colab-mask-rcnn - How to run Object Detection and Segmentation on a Video Fast for Free

  •        828

The easiest way is to open the colab notebook. The following instruction is optional and only useful if you want to run locally.

https://github.com/Tony607/colab-mask-rcnn

Tags
Implementation
License
Platform

   




Related Projects

Mask_RCNN - Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

  •    Python

This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone. The code is documented and designed to be easy to extend. If you use it in your research, please consider citing this repository (bibtex below). If you work on 3D vision, you might find our recently released Matterport3D dataset useful as well. This dataset was created from 3D-reconstructed spaces captured by our customers who agreed to make them publicly available for academic use. You can see more examples here.

tf-faster-rcnn - Tensorflow Faster RCNN for Object Detection

  •    Python

For a good and more up-to-date implementation for faster/mask RCNN with multi-gpu support, please see the example in TensorPack here. A Tensorflow implementation of faster RCNN detection framework by Xinlei Chen (xinleic@cs.cmu.edu). This repository is based on the python Caffe implementation of faster RCNN available here.

keras-rcnn - Keras package for region-based convolutional neural networks (RCNNs)

  •    Python

keras-rcnn is the Keras package for region-based convolutional neural networks. The data is made up of a list of dictionaries corresponding to images.

mmdetection - OpenMMLab Detection Toolbox and Benchmark

  •    Python

News: We released the technical report on ArXiv. MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.


luminoth - Deep Learning toolkit for Computer Vision

  •    Python

Luminoth is an open source toolkit for computer vision. Currently, we support object detection, but we are aiming for much more. It is built in Python, using TensorFlow and Sonnet. Read the full documentation here.

Pyod - A Python Toolkit for Scalable Outlier Detection (Anomaly Detection)

  •    Python

Important Notes: PyOD contains some neural network based models, e.g., AutoEncoders, which are implemented in keras. However, PyOD would NOT install keras and tensorflow automatically. This would reduce the risk of damaging your local installations. You are responsible for installing keras and tensorflow if you want to use neural net based models. An instruction is provided here. Anomaly detection resources, e.g., courses, books, papers and videos.

tensornets - High level network definitions with pre-trained weights in TensorFlow

  •    Python

High level network definitions with pre-trained weights in TensorFlow (tested with >= 1.1.0). You can install TensorNets from PyPI (pip install tensornets) or directly from GitHub (pip install git+https://github.com/taehoonlee/tensornets.git).

OpenPCDet - OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

  •    Python

OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release of [PointRCNN], [Part-A^2 net] and [PV-RCNN].

Detectron - FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet

  •    Python

Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including Mask R-CNN. It is written in Python and powered by the Caffe2 deep learning framework. At FAIR, Detectron has enabled numerous research projects, including: Feature Pyramid Networks for Object Detection, Mask R-CNN, Detecting and Recognizing Human-Object Interactions, Focal Loss for Dense Object Detection, Non-local Neural Networks, Learning to Segment Every Thing, and Data Distillation: Towards Omni-Supervised Learning.

Android-Object-Detection - :coffee: Fast-RCNN and Scene Recognition using Caffe

  •    Java

Get the Caffe model and push it to Phone SDCard. For object detection, network(*.prototxt) should use ROILayer, you can refer to Fast-RCNN. For scene recognition(object recognition), it can use any caffe network and weight with memory input layer. Scene recognition - Convolutional neural networks trained on Places Input a picture of a place or scene and predicts it.

Mask-RCNN - A PyTorch implementation of the architecture of Mask RCNN, serves as an introduction to working with PyTorch

  •    Python

A PyTorch implementation of the architecture of Mask RCNN, serves as an introduction to working with PyTorch

saliency - TensorFlow implementation for SmoothGrad, Grad-CAM, Guided backprop, Integrated Gradients and other saliency techniques

  •    Jupyter

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.

RON - RON: Reverse Connection with Objectness Prior Networks for Object Detection, CVPR 2017

  •    Python

RON is a state-of-the-art visual object detection system for efficient object detection framework. The code is modified from py-faster-rcnn. You can use the code to train/evaluate a network for object detection task. For more details, please refer to our CVPR paper. Note: SSD300 and SSD500 are the original SSD model from SSD.

android-yolo - Real-time object detection on Android using the YOLO network with TensorFlow

  •    C++

android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is compatible with Android Studio and usable out of the box. It can detect the 20 classes of objects in the Pascal VOC dataset: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train and tv/monitor. The network only outputs one predicted bounding box at a time for now. The code can and will be extended in the future to output several predictions. To use this demo first clone the repository. Download the TensorFlow YOLO model and put it in android-yolo/app/src/main/assets. Then open the project on Android Studio. Once the project is open you can run the project on your Android device using the Run 'app' command and selecting your device.

adversarial-frcnn - A-Fast-RCNN (CVPR 2017)

  •    Python

This is a Caffe based version of A-Fast-RCNN (arxiv_link). Although we originally implement it on torch, this Caffe re-implementation is much simpler, faster and easier to use. We release the code for training A-Fast-RCNN with Adversarial Spatial Dropout Network.

Stereo-RCNN - Code for 'Stereo R-CNN based 3D Object Detection for Autonomous Driving' (CVPR 2019)

  •    Python

This project contains the implementation of our CVPR 2019 paper arxiv. Stereo R-CNN focuses on accurate 3D object detection and estimation using image-only data in autonomous driving scenarios. It features simultaneous object detection and association for stereo images, 3D box estimation using 2D information, accurate dense alignment for 3D box refinement. We also provide a light-weight version based on the monocular 2D detection, which only uses stereo images in the dense alignment module. Please checkout to branch mono for details.

crfasrnn_keras - CRF-RNN Keras/Tensorflow version

  •    Python

This repository contains Keras/Tensorflow code for the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks. This paper was initially described in an arXiv tech report. The online demo of this project won the Best Demo Prize at ICCV 2015. Original Caffe-based code of this project can be found here. Results produced with this Keras/Tensorflow code are almost identical to that with the Caffe-based version. The root directory of the clone will be referred to as crfasrnn_keras hereafter.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.