GANotebooks - wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

  •        231

wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch



Related Projects

Self-Attention-GAN - Pytorch implementation of Self-Attention Generative Adversarial Networks (SAGAN)

  •    Python

Han Zhang, Ian Goodfellow, Dimitris Metaxas and Augustus Odena, "Self-Attention Generative Adversarial Networks." arXiv preprint arXiv:1805.08318 (2018). This repository provides a PyTorch implementation of SAGAN. Both wgan-gp and wgan-hinge loss are ready, but note that wgan-gp is somehow not compatible with the spectral normalization. Remove all the spectral normalization at the model for the adoption of wgan-gp.

iGAN - Interactive Image Generation via Generative Adversarial Networks

  •    Python

[Project] [Youtube] [Paper] A research prototype developed by UC Berkeley and Adobe CTL. Latest development: [pix2pix]: Torch implementation for learning a mapping from input images to output images. [CycleGAN]: Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs. [pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.

wgan-gp - A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

  •    Python

An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Some Sample Result, you can refer to the results/toy/ folder for details.

GAN - Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

  •    Python

All have been tested with python2.7+ and tensorflow1.0+ in linux. The final layer can be sigmoid(data: [0,1]) or tanh(data:[-1,1]), my codes all use sigmoid. Using weights_initializer=tf.random_normal_initializer(0, 0.02) will converge faster.

CycleGAN - Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more

  •    Lua

This package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning. The code was written by Jun-Yan Zhu and Taesung Park. Note: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.

pytorch-CycleGAN-and-pix2pix - Image-to-image translation in PyTorch (e

  •    Python

This is our PyTorch implementation for both unpaired and paired image-to-image translation. It is still under active development. The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.

chainer-gan-lib - Chainer implementation of recent GAN variants

  •    Python

This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score on Cifar-10 dataset. Note that our codes are not faithful re-implementation of the original paper. This implementation has been tested with the following versions.

dlwin - GPU-accelerated Deep Learning on Windows 10 native

  •    Python

There are certainly a lot of guides to assist you build great deep learning (DL) setups on Linux or Mac OS (including with Tensorflow which, unfortunately, as of this posting, cannot be easily installed on Windows), but few care about building an efficient Windows 10-native setup. Most focus on running an Ubuntu VM hosted on Windows or using Docker, unnecessary - and ultimately sub-optimal - steps. We also found enough misguiding/deprecated information out there to make it worthwhile putting together a step-by-step guide for the latest stable versions of Keras, Tensorflow, CNTK, MXNet, and PyTorch. Used either together (e.g., Keras with Tensorflow backend), or independently -- PyTorch cannot be used as a Keras backend, TensorFlow can be used on its own -- they make for some of the most powerful deep learning python libraries to work natively on Windows.

Practical_RL - A course in reinforcement learning in the wild

  •    Jupyter

A course on reinforcement learning in the wild. Taught on-campus at HSE and YSDA and maintained to be friendly to online students (both english and russian). The syllabus is approximate: the lectures may occur in a slightly different order and some topics may end up taking two weeks.

alpha-zero-general - A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4

  •    Python

A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play based reinforcement learning based on the AlphaGo Zero paper (Silver et al). It is designed to be easy to adopt for any two-player turn-based adversarial game and any deep learning framework of your choice. A sample implementation has been provided for the game of Othello in PyTorch, Keras and TensorFlow. An accompanying tutorial can be found here. We also have implementations for GoBang and TicTacToe. To use a game of your choice, subclass the classes in and and implement their functions. Example implementations for Othello can be found in othello/ and othello/{pytorch,keras,tensorflow}/

pix2pix-tensorflow - TensorFlow implementation of "Image-to-Image Translation Using Conditional Adversarial Networks"

  •    Python

TensorFlow implementation of Image-to-Image Translation Using Conditional Adversarial Networks that learns a mapping from input images to output images. Note: To avoid the fast convergence of D (discriminator) network, G (generator) network is updated twice for each D network update, which differs from original paper but same as DCGAN-tensorflow, which this project based on.

deepo - A series of Docker images (and their generator) that allows you to quickly set up your deep learning research environment

  •    Python

If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g. This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.

tensorlayer-tricks - How to use TensorLayer


While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

InfoGAN - Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

  •    Python

Code for reproducing key results in the paper InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets by Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. This project currently requires the dev version of TensorFlow available on Github: As of the release, the latest commit is 79174a.

XLearning - AI on Hadoop

  •    Java

XLearning is a convenient and efficient scheduling platform combined with the big data and artificial intelligence, support for a variety of machine learning, deep learning frameworks. XLearning is running on the Hadoop Yarn and has integrated deep learning frameworks such as TensorFlow, MXNet, Caffe, Theano, PyTorch, Keras, XGBoost. XLearning has the satisfactory scalability and compatibility.Besides the distributed mode of TensorFlow and MXNet frameworks, XLearning supports the standalone mode of all deep learning frameworks such as Caffe, Theano, PyTorch. Moreover, XLearning allows the custom versions and multi-version of frameworks flexibly.

crfasrnn_keras - CRF-RNN Keras/Tensorflow version

  •    Python

This repository contains Keras/Tensorflow code for the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks. This paper was initially described in an arXiv tech report. The online demo of this project won the Best Demo Prize at ICCV 2015. Original Caffe-based code of this project can be found here. Results produced with this Keras/Tensorflow code are almost identical to that with the Caffe-based version. The root directory of the clone will be referred to as crfasrnn_keras hereafter.

keras-rl - Deep Reinforcement Learning for Keras.

  •    Python

keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

pytorch-summary - Model summary in PyTorch similar to `model.summary()` in Keras

  •    Python

Keras has a neat API to view the visualization of the model which is very helpful while debugging your network. Here is a barebone code to try and mimic the same in PyTorch. The aim is to provide information complementary to, what is not provided by print(your_model) in PyTorch.