dplyr - dplyr: A grammar of data manipulation

  •        46

These all combine naturally with group_by() which allows you to perform any operation β€œby group”. You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table"). dplyr is designed to abstract over how the data is stored. That means as well as working with local data frames, you can also work with remote database tables, using exactly the same R code. Install the dbplyr package then read vignette("databases", package = "dbplyr").




Related Projects

tidyquant - Bringing financial analysis to the tidyverse

  •    R

tidyquant integrates the best resources for collecting and analyzing financial data, zoo, xts, quantmod, TTR, and PerformanceAnalytics, with the tidy data infrastructure of the tidyverse allowing for seamless interaction between each. You can now perform complete financial analyses in the tidyverse. Our short introduction to tidyquant on YouTube.

tidytext - Text mining using dplyr, ggplot2, and other tidy tools :sparkles::page_facing_up::sparkles::page_facing_up::sparkles:

  •    R

Using tidy data principles can make many text mining tasks easier, more effective, and consistent with tools already in wide use. Much of the infrastructure needed for text mining with tidy data frames already exists in packages like dplyr, broom, tidyr and ggplot2. In this package, we provide functions and supporting data sets to allow conversion of text to and from tidy formats, and to switch seamlessly between tidy tools and existing text mining packages. Check out our book to learn more about text mining using tidy data principles. This function uses the tokenizers package to separate each line into words. The default tokenizing is for words, but other options include characters, n-grams, sentences, lines, paragraphs, or separation around a regex pattern.

dplython - dplyr for python

  •    Python

Welcome to Dplython: Dplyr for Python. Dplyr is a library for the language R designed to make data analysis fast and easy. The philosophy of Dplyr is to constrain data manipulation to a few simple functions that correspond to the most common tasks. This maps thinking closer to the process of writing code, helping you move closer to analyze data at the "speed of thought".

tidyverse - Easily install and load packages from the tidyverse

  •    R

The tidyverse is a set of packages that work in harmony because they share common data representations and API design. The tidyverse package is designed to make it easy to install and load core packages from the tidyverse in a single command. If you’d like to learn how to use the tidyverse effectively, the best place to start is R for data science.

tidytuesday - Repo for initial setup of the #tidytuesday visualization project


A weekly data project aimed at the R ecosystem. An emphasis will be placed on understanding how to summarize and arrange data to make meaningful charts with ggplot2, tidyr, dplyr, and other tools in the tidyverse ecosystem. We will have many sources of data and want to emphasize that no causation is implied. There are various moderating variables that affect all data, many of which might not have been captured in these datasets. As such, our guidelines are to use the data provided to practice your data tidying and plotting techniques. Participants are invited to consider for themselves what nuancing factors might underlie these relationships.

forcats - 🐈🐈🐈🐈: tools for working with categorical variables (factors)

  •    R

R uses factors to handle categorical variables, variables that have a fixed and known set of possible values. Historically, factors were much easier to work with than character vectors, so many base R functions automatically convert character vectors to factors. (For historical context, I recommend stringsAsFactors: An unauthorized biography by Roger Peng, and stringsAsFactors = <sigh> by Thomas Lumley. If you want to learn more about other approaches to working with factors and categorical data, I recommend Wrangling categorical data in R, by Amelia McNamara and Nicholas Horton.) These days, making factors automatically is no longer so helpful, so packages in the tidyverse never create them automatically. However, factors are still useful when you have true categorical data, and when you want to override the ordering of character vectors to improve display. The goal of the forcats package is to provide a suite of useful tools that solve common problems with factors. If you’re not familiar with strings, the best place to start is the chapter on factors in R for Data Science.

infer - An R package for tidyverse-friendly statistical inference

  •    R

The objective of this package is to perform statistical inference using an expressive statistical grammar that coheres with the tidyverse design framework. To install the developmental version of infer, make sure to install remotes first. The pkgdown website for this developmental version is at https://infer.netlify.com.

multidplyr - Partitioned data frames for 'dplyr'

  •    R

multidplyr is a backend for dplyr that partitions a data frame across multiple cores. You tell multidplyr how to split the data up with partition() and then the data stays on each node until you explicitly retrieve it with collect(). This minimises the amount of time spent moving data around, and maximises parallel performance. This idea is inspired by partools by Norm Matloff and distributedR by the Vertica Analytics team. Due to the overhead associated with communicating between the nodes, you won't expect to see much performance improvement on basic dplyr verbs with less than ~10 million observations. However, you'll see improvements much faster if you're doing more complex operations with do().

sparklyr - R interface for Apache Spark

  •    R

If you use the RStudio IDE, you should also download the latest preview release of the IDE which includes several enhancements for interacting with Spark (see the RStudio IDE section below for more details). The returned Spark connection (sc) provides a remote dplyr data source to the Spark cluster.

modelr - Helper functions for modelling

  •    R

The modelr package provides functions that help you create elegant pipelines when modelling. It is designed primarily to support teaching the basics of modelling within the tidyverse, particularly in R for Data Science. modelr is stable: it has achieved its goal of making it easier to teach modelling within the tidyverse. For more general modelling tasks, check out the family of “tidymodel” packages like recipes, rsample, parsnip, and tidyposterior.

datascience-box - Data Science Course in a Box

  •    HTML

This introductory data science course that is our (working) answer to these questions. The courses focuses on data acquisition and wrangling, exploratory data analysis, data visualization, and effective communication and approaching statistics from a model-based, instead of an inference-based, perspective. A heavy emphasis is placed on a consitent syntax (with tools from the tidyverse), reproducibility (with R Markdown) and version control and collaboration (with git/GitHub). We help ease the learning curve by avoiding local installation and supplementing out-of-class learning with interactive tools (like learnr tutorials). By the end of the semester teams of students work on fully reproducible data analysis projects on data they acquired, answering questions they care about. This repository serves as a "data science course in a box" containing all materials required to teach (or learn from) the course described above.

tidyr - Easily tidy data with spread and gather functions.

  •    R

Tidy data describes a standard way of storing data that is used wherever possible throughout the tidyverse. If you ensure that your data is tidy, you’ll spend less time fighting with the tools and more time working on your analysis. gather() takes multiple columns, and gathers them into key-value pairs: it makes “wide” data longer.

ggplot2 - An implementation of the Grammar of Graphics in R

  •    R

ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details. It’s hard to succinctly describe how ggplot2 works because it embodies a deep philosophy of visualisation. However, in most cases you start with ggplot(), supply a dataset and aesthetic mapping (with aes()). You then add on layers (like geom_point() or geom_histogram()), scales (like scale_colour_brewer()), faceting specifications (like facet_wrap()) and coordinate systems (like coord_flip()).

stringr - A fresh approach to string manipulation in R

  •    R

Strings are not glamorous, high-profile components of R, but they do play a big role in many data cleaning and preparation tasks. The stringr package provide a cohesive set of functions designed to make working with strings as easy as possible. If you’re not familiar with strings, the best place to start is the chapter on strings in R for Data Science. stringr is built on top of stringi, which uses the ICU C library to provide fast, correct implementations of common string manipulations. stringr focusses on the most important and commonly used string manipulation functions whereas stringi provides a comprehensive set covering almost anything you can imagine. If you find that stringr is missing a function that you need, try looking in stringi. Both packages share similar conventions, so once you’ve mastered stringr, you should find stringi similarly easy to use.

ggraph - Grammar of Graph Graphics

  •    R

ggraph is an extension of ggplot2 aimed at supporting relational data structures such as networks, graphs, and trees. While it builds upon the foundation of ggplot2 and its API it comes with its own self-contained set of geoms, facets, etc., as well as adding the concept of layouts to the grammar. All of the tree concepts has been discussed in detail in dedicated blog posts that are also available as vignettes in the package. Please refer to these for more information.

pandas - Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data

  •    Python

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal. Binary installers for the latest released version are available at the Python package index and on conda.

vroom - Fast reading of delimited files

  •    C++

The fastest delimited reader for R, 1.27 GB/sec. vroom doesn’t stop to actually read all of your data, it simply indexes where each record is located so it can be read later. The vectors returned use the Altrep framework to lazily load the data on-demand when it is accessed, so you only pay for what you use. This lazy access is done automatically, so no changes to your R data-manipulation code are needed.

ggvis - Interactive grammar of graphics for R

  •    R

ggvis is currently dormant. We fundamentally believe in the ideas that underlie ggvis: reactive programming is the right foundation for interactive visualisation. However, we are not currently working on ggvis because we do not see it as the most pressing issue for the R community as you can only use interactive graphics once you've successfuly tackled the rest of the data analysis process. We hope to come back to ggvis in the future; in the meantime you might want to try out plotly or creating inteactive graphics with shiny.

tidy-text-mining - Manuscript of the book "Tidy Text Mining with R" by Julia Silge and David Robinson

  •    TeX

This is a draft of the book Text Mining with R: A Tidy Approach, by Julia Silge and David Robinson. Please note that this work is being written under a Contributor Code of Conduct and released under a CC-BY-NC-SA license. By participating in this project (for example, by submitting a pull request with suggestions or edits) you agree to abide by its terms.

ggplot2 - An implementation of the Grammar of Graphics in R

  •    R

An implementation of the Grammar of Graphics in R