Related Projects

opencv4nodejs - Asynchronous OpenCV 3

  •    C++

By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the API Documentation. Furthermore, contribution is highly appreciated. If you want to get involved you can have a look at the contribution guide.

MMLSpark - Microsoft Machine Learning for Apache Spark

  •    Scala

MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

Computer-Vision-Basics-with-Python-Keras-and-OpenCV - Full tutorial of computer vision and machine learning basics with OpenCV and Keras in Python

  •    Jupyter

This was created as part of an educational for the Western Founders Network computer vision and machine learning educational session. Note: Please check the issues on this repo if you're having problems with the notebook.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

opencv - Open Source Computer Vision Library

  •    C++

Please read the contribution guidelines before starting work on a pull request.


OpenCV-iOS - OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision

  •    Makefile

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision. This project is a port of the OpenCV library for Apple iOS. It includes two XCode projects: one for iPhone, the other one for iPad. OpenCV is released under the BSD License, it is free for both academic and commercial use.

openpose - OpenPose: Real-time multi-person keypoint detection library for body, face, and hands estimation

  •    C++

OpenPose represents the first real-time multi-person system to jointly detect human body, hand, and facial keypoints (in total 135 keypoints) on single images. For further details, check all released features and release notes.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

ludwig - Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code

  •    Python

Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

STL like OpenCV wrapper

  •    C++

Aims of this Project are 1. Integrating various Vision, Machine learning library based on OpenCV. 2. Providing various function based on the integrated library. 3. Using OpenCV with template based STL like code

Machine-Learning-Tutorials - machine learning and deep learning tutorials, articles and other resources

  •    

This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resources. Other awesome lists can be found in this list. If you want to contribute to this list, please read Contributing Guidelines.

OpenCV - Open Source Computer Vision

  •    C++

OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer vision. The library has more than 500 optimized algorithms. It is used to interactive art, to mine inspection, stitching maps on the web on through advanced robotics.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

opencv - OpenCV projects: Face Recognition, Machine Learning, Colormaps, Local Binary Patterns, Examples

  •    C++

This repository contains OpenCV code and documents. More (maybe) here: https://www.bytefish.de.

opencv-processing - OpenCV for Processing

  •    Java

A Processing library for the OpenCV computer vision library. OpenCV for Processing is based on OpenCV's official Java bindings. It attempts to provide convenient wrappers for common OpenCV functions that are friendly to beginners and feel familiar to the Processing environment.

node-tensorflow - Node.js + TensorFlow

  •    Javascript

TensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.